nature.com

Induced pluripotent stem cells: the new patient? - Nature Reviews Molecular Cell Biology

  • ️Mummery, Christine L.
  • ️Thu Oct 04 2012
  • Scannell, J. W., Blanckley, A., Boldon, H. & Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nature Rev. Drug Discov. 11, 191–200 (2012).

    Article  CAS  Google Scholar 

  • Mullard, A. 2011 FDA drug approvals. Nature Rev. Drug Discov. 11, 91–94 (2012).

    Article  CAS  Google Scholar 

  • Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007). This breakthrough study demonstrates that pluripotent stem cells, termed iPS cells, can be generated from embryonic and adult tissue cells in mice by expressing only a few specific transcription factors.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007). This study demonstrates the applicability of induced pluripotency technology to human somatic cells.

    Article  CAS  PubMed  Google Scholar 

  • Burridge, P. W., Keller, G., Gold, J. D. & Wu, J. C. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10, 16–28 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, H. & Zhang, S. C. Specification of neuronal and glial subtypes from human pluripotent stem cells. Cell. Mol. Life Sci. 68, 3995–4008 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, S. M. & Hochedlinger, K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nature Cell Biol. 13, 497–505 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Google Scholar 

  • Stadtfeld, M. & Hochedlinger, K. Induced pluripotency: history, mechanisms, and applications. Genes Dev. 24, 2239–2263 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinton, D. A. & Daley, G. Q. The promise of induced pluripotent stem cells in research and therapy. Nature 481, 295–305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez, F., Boue, S. & Izpisua Belmonte, J. C. Methods for making induced pluripotent stem cells: reprogramming à la carte. Nature Rev. Genet. 12, 231–242 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Bock, C. et al. Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144, 439–452 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohi, Y. et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nature Cell Biol. 13, 541–549 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Osafune, K. et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nature Biotech. 26, 313–315 (2008).

    Article  CAS  Google Scholar 

  • Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Cheung, C., Bernardo, A. S., Trotter, M. W., Pedersen, R. A. & Sinha, S. Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nature Biotech. 30, 165–173 (2012).

    Article  CAS  Google Scholar 

  • Mummery, C. et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107, 2733–2740 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Laflamme, M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotech. 25, 1015–1024 (2007).

    Article  CAS  Google Scholar 

  • Xu, X. Q. et al. Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation 76, 958–970 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Yang, L. et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453, 524–528 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Mummery, C. L. et al. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ. Res. 111, 344–358 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois, N. C. et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nature Biotech. 29, 1011–1018 (2011).

    Article  CAS  Google Scholar 

  • Elliott, D. A. et al. NKX2-5eGFP/w hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nature Methods 8, 1037–1040 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Ritner, C. et al. An engineered cardiac reporter cell line identifies human embryonic stem cell-derived myocardial precursors. PLoS ONE 6, e16004 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber, I. et al. Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB J. 21, 2551–2563 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Goulburn, A. L. et al. A targeted NKX2.1 human embryonic stem cell reporter line enables identification of human basal forebrain derivatives. Stem Cells 29, 462–473 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Noisa, P., Urrutikoetxea-Uriguen, A., Li, M. & Cui, W. Generation of human embryonic stem cell reporter lines expressing GFP specifically in neural progenitors. Stem Cell Rev. 6, 438–449 (2010).

    Article  CAS  Google Scholar 

  • Ma, J. et al. High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am J. Physiol. Heart Circ. Physiol. 301, H2006–H2017 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, W. Z. et al. Neuregulin/ErbB signaling regulates cardiac subtype specification in differentiating human embryonic stem cells. Circ. Res. 107, 776–786 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, B. Y. et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc. Natl Acad. Sci. USA 107, 4335–4340 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dambrot, C. Passier, R., Atsma, D. & Mummery, C. L. Cardiomyocyte differentiation of pluripotent stem cells and their use as cardiac disease models. Biochem. J. 434, 25–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Lombardi, R. et al. Nuclear plakoglobin is essential for differentiation of cardiac progenitor cells to adipocytes in arrhythmogenic right ventricular cardiomyopathy. Circ. Res. 109, 1342–1353 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siedner, S. et al. Developmental changes in contractility and sarcomeric proteins from the early embryonic to the adult stage in the mouse heart. J. Physiol. 548, 493–505 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaaf, S. et al. Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS ONE 6, e26397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvir, T. et al. Nanowired three-dimensional cardiac patches. Nature Nanotechnol. 6, 720–725 (2011).

    Article  CAS  Google Scholar 

  • Davis, R. P., van den Berg, C. W., Casini, S., Braam, S. R. & Mummery, C. L. Pluripotent stem cell models of cardiac disease and their implication for drug discovery and development. Trends Mol. Med. 17, 475–484 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Carvajal-Vergara, X. et al. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465, 808–812 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, N. et al. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci. Transl. Med. 4, 130ra147 (2012).

    Article  Google Scholar 

  • Shi, Y., Kirwan, P., Smith, J., Robinson, H. P. & Livesey, F. J. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nature Neurosci. 15, 477–486 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 480, 547–551 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennand, K. J. & Gage, F. H. Concise review: the promise of human induced pluripotent stem cell-based studies of schizophrenia. Stem Cells 29, 1915–1922 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muotri, A. R., Nakashima, K., Toni, N., Sandler, V. M. & Gage, F. H. Development of functional human embryonic stem cell-derived neurons in mouse brain. Proc. Natl Acad. Sci. USA 102, 18644–18648 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen, M. B., Yan, H., Krishnaney-Davison, R., Al Sawaf, A. & Zhang, S. C. Survival and differentiation of transplanted neural stem cells derived from human induced pluripotent stem cells in a rat stroke model. J. Stroke Cerebrovasc. Dis. 10 Nov 2011 (doi:10.1016/j.jstrokecerebrovasdis.2011.09.008).

  • Laurent, L. C. et al. Restricted ethnic diversity in human embryonic stem cell lines. Nature Methods 7, 6–7 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Narva, E. et al. High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nature Biotech. 28, 371–377 (2010).

    Article  CAS  Google Scholar 

  • Pera, M. F. Stem cells: The dark side of induced pluripotency. Nature 471, 46–47 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Mummery, C. Induced pluripotent stem cells — a cautionary note. N. Engl. J. Med. 364, 2160–2162 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Young, M. A. et al. Background mutations in parental cells account for most of the genetic heterogeneity of induced pluripotent stem cells. Cell Stem Cell 10, 570–582 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yusa, K. et al. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478, 391–394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, G. H. et al. Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs. Cell Stem Cell 8, 688–694 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soldner, F. et al. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136, 964–977 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa, M. et al. A method for genetic modification of human embryonic stem cells using electroporation. Nature Protoc. 2, 792–796 (2007).

    Article  CAS  Google Scholar 

  • Zhou, H. et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4, 381–384 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Miller, J. C. et al. A TALE nuclease architecture for efficient genome editing. Nature Biotech. 29, 143–148 (2011).

    Article  CAS  Google Scholar 

  • Soldner, F. et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146, 318–331 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Internation HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  • Braam, S. R. et al. Repolarization reserve determines drug responses in human pluripotent stem cell derived cardiomyocytes. Stem Cell Res. 6 Sept 2012 (doi:10.1016/j.scr.2012.08.007).

  • Tiscornia, G., Vivas, E. L. & Belmonte, J. C. Diseases in a dish: modeling human genetic disorders using induced pluripotent cells. Nature Med. 17, 1570–1576 (2011). Describes the generation of the first iPS cells from patients with various genetic diseases, characterised by either Mendelian or complex inheritance.

    Article  CAS  PubMed  Google Scholar 

  • Park, I. H. et al. Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons, B. D. & Clevers, H. Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 145, 851–862 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Matsa, E. et al. Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. Eur. Heart J. 32, 952–962 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moretti, A. et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N. Engl. J. Med. 363, 1397–1409 (2010). Generates iPS cells from the skin of two patients with LQTS and shows that their differentiated cardiac derivatives recapitulated the disease phenotype in vitro and that the efficacy of β-blockade therapy was evident in these cells.

    Article  CAS  PubMed  Google Scholar 

  • Itzhaki, I. et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471, 225–229 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Yazawa, M. et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471, 230–234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahti, A. L. et al. Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture. Dis. Model. Mech. 5, 220–230 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Jung, C. B. et al. Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Mol. Med. 4, 180–191 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatima, A. et al. In vitro modeling of ryanodine receptor 2 dysfunction using human induced pluripotent stem cells. Cell. Physiol. Biochem. 28, 579–592 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novak, A. et al. Cardiomyocytes generated from CPVTD307H patients are arrhythmogenic in response to β-adrenergic stimulation. J. Cell. Mol. Med. 16, 468–482 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis, R. P. et al. Cardiomyocytes derived from pluripotent stem cells recapitulate electrophysiological characteristics of an overlap syndrome of cardiac sodium channel disease. Circulation 125, 3079–3091 (2012).

    Article  PubMed  Google Scholar 

  • Lee, G. et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461, 402–406 (2009). Uses iPS cells from patients that are affected by familial dysautonomia to extend the knowledge and to provide new insights into the disease: mis-splicing of mutated IKBKAP occurred in a tissue-specific way; neural crest precursors expressed low levels of ASCL1 (achaete-scute complex homologue 1), resulting in a primary defect of autonomic neurogenesis; neural crest precursors had migration defects; and kinetin could partially rescue the splicing defect in human iPS cell-derived peripheral neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchetto, M. C. et al. A model for neural development and treatment of RTT using human induced pluripotent stem cells. Cell 143, 527–539 (2010). Derives iPS cells from patients that are affected by RTT and differentiates these cells into neurons that showed abnormalities in vitro that could be rescued by specific drug treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batista, L. F. et al. Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature 474, 399–402 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devine, M. J. et al. Parkinson's disease induced pluripotent stem cells with triplication of the α-synuclein locus. Nature Commun. 2, 440 (2011).

    Article  CAS  Google Scholar 

  • Brennand, K. J. et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 473, 221–225 (2011). Generates iPS cells from patients that are affected by schizophrenia and differentiated these cells into neurons showing phenotypic and gene expression changes that were ameliorated upon anti-psychotic drug application.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasca, S. P. et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nature Med. 17, 1657–1662 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Koch, P. et al. Excitation-induced ataxin-3 aggregation in neurons from patients with Machado–Joseph disease. Nature 480, 543–546 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Israel, M. A. et al. Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature 482, 216–220 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faustino, N. A. & Cooper, T. A. Pre-mRNA splicing and human disease. Genes Dev. 17, 419–437 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Mekhoubad, S. et al. Erosion of dosage compensation impacts human iPSC disease modeling. Cell Stem Cell 10, 595–609 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel, G. Stem cells. Diseases in a dish take off. Science 330, 1172–1173 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Gore, A. et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 471, 63–67 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchetto, M. C. et al. Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLoS ONE 4, e7076 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruck, T. & Benvenisty, N. Meta-analysis of the heterogeneity of X chromosome inactivation in human pluripotent stem cells. Stem Cell Res. 6, 187–193 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Fusaki, N., Ban, H., Nishiyama, A., Saeki, K. & Hasegawa, M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 85, 348–362 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  • Kaji, K. et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458, 771–775 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woltjen, K., Hamalainen, R., Kibschull, M., Mileikovsky, M. & Nagy, A. Transgene-free production of pluripotent stem cells using piggyBac transposons. Methods Mol. Biol. 767, 87–103 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. & Hochedlinger, K. Induced pluripotent stem cells generated without viral integration. Science 322, 945–949 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, J. et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797–801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren, L. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7, 618–630 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyoshi, N. et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8, 633–638 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Kim, D. et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4, 472–476 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, S. et al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 7, 651–655 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Esteban, M. A. et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6, 71–79 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Lemonnier, T. et al. Modeling neuronal defects associated with a lysosomal disorder using patient-derived induced pluripotent stem cells. Hum. Mol. Genet. 20, 3653–3666 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Kazuki, Y. et al. Complete genetic correction of iPS cells from Duchenne muscular dystrophy. Mol. Ther. 18, 386–393 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Urbach, A., Bar-Nur, O., Daley, G. Q. & Benvenisty, N. Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 6, 407–411 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang, J. et al. Induced pluripotent stem cell models from X-linked adrenoleukodystrophy patients. Ann. Neurol. 70, 402–409 (2011).

    Article  PubMed  Google Scholar 

  • Ho, J. C. et al. Generation of induced pluripotent stem cell lines from 3 distinct laminopathies bearing heterogeneous mutations in lamin A/C. Aging (Albany NY) 3, 380–390 (2011).

    Article  CAS  Google Scholar 

  • Ye, Z. et al. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 114, 5473–5480 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maehr, R. et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc. Natl Acad. Sci. USA 106, 15768–15773 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghodsizadeh, A. et al. Generation of liver disease-specific induced pluripotent stem cells along with efficient differentiation to functional hepatocyte-like cells. Stem Cell Rev. 6, 622–632 (2010).

    Article  Google Scholar 

  • Agarwal, S. et al. Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature 464, 292–296 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolar, J. et al. Induced pluripotent stem cells from individuals with recessive dystrophic epidermolysis bullosa. J. Invest. Dermatol. 131, 848–856 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Itoh, M., Kiuru, M., Cairo, M. S. & Christiano, A. M. Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proc. Natl Acad. Sci. USA 108, 8797–8802 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitne-Neto, M. et al. Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Hum. Mol. Genet. 20, 3642–3652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimos, J. T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218–1221 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Rashid, S. T. et al. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J. Clin. Invest. 120, 3127–3136 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J. et al. A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8, 31–45 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Liu, G. H. et al. Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature 472, 221–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolar, J. et al. Hematopoietic differentiation of induced pluripotent stem cells from patients with mucopolysaccharidosis type I (Hurler syndrome). Blood 117, 839–847 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, H. N. et al. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8, 267–280 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seibler, P. et al. Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J. Neurosci. 31, 5970–5976 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swistowski, A. et al. Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells 28, 1893–1904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, Z. B. et al. Modeling retinal degeneration using patient-specific induced pluripotent stem cells. PLoS ONE 6, e17084 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muotri, A. R. et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature 468, 443–446 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, S. et al. Rescue of ATP7B function in hepatocyte-like cells from Wilson's disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin. Hum. Mol. Genet. 20, 3176–3187 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Zou, J. et al. Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease-mediated safe harbor targeting. Blood 117, 5561–5572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedrosa, E. et al. Development of patient-specific neurons in schizophrenia using induced pluripotent stem cells. J. Neurogenet. 25, 88–103 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Paulsen, B. D. et al. Altered oxygen metabolism associated to neurogenesis of induced pluripotent stem cells derived from a schizophrenic patient. Cell Transplant. 22 Sept 2011 (doi:10.3727/096368911X600957).

  • Camnasio, S. et al. The first reported generation of several induced pluripotent stem cell lines from homozygous and heterozygous Huntington's disease patients demonstrates mutation related enhanced lysosomal activity. Neurobiol. Dis. 46, 41–51 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Jeon, I. et al. Neuronal properties, in vivo effects and pathology of a Huntington's Disease patient-derived induced pluripotent stem cells. Stem Cells 30, 2054–2062 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Liu, J. et al. Signaling defects in iPSC-derived fragile X premutation neurons. Hum. Mol. Genet. 21, 3795–3805 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egawa, N. et al. Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci. Transl. Med. 4, 145ra104 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Ma, D. et al. Generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes as a cellular model of arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. 13 Jul 2012 (doi:10.1093/eurheartj/ehs226).

  • Egashira, T. et al. Disease characterization using LQTS-specific induced pluripotent stem cells. Cardiovasc. Res. 95, 419–429 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Andrade, L. N., Nathanson, J. L., Yeo, G. W., Menck, C. F. & Muotri, A. R. Evidence for premature aging due to oxidative stress in iPSCs from Cockayne Syndrome. Hum. Mol. Genet. 21, 3825–3834 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotta, A., et al. Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nature Methods 6, 370–376 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Bilican, B., et al. Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proc. Natl Acad. Sci. USA 109, 5803–5808 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yagi, T., et al. Modeling familial Alzheimer's disease with induced pluripotent stem cells. Hum. Mol. Genet. 20, 4530–4539 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Ananiev, G., Williams, E. C., Li, H. & Chang, Q. Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PloS one 6, e25255 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung, A. Y., et al. Isolation of MECP2-null Rett syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum. Mol. Genet. 20, 2103–2115 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, H. P., et al. Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification. Hum. Mol. Genet. 20, 4851–4864 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Ricciardi, S., et al. CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nature Cell Biol. 14, 911–923 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Somers, A., et al. Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells 28, 1728–1740 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, I. F., et al. Engineering of human pluripotent stem cells by AAV-mediated gene targeting. Mol. Ther. 18, 1192–1199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hargus, G., et al. Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc. Natl Acad. Sci. USA 107, 15921–15926 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebert, A. D., et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457, 277–280 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Howden, S. E., et al. Genetic correction and analysis of induced pluripotent stem cells from a patient with gyrate atrophy. Proc. Natl Acad. Sci. USA 108, 6537–6542 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiang, C. H., et al. Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Mol. Psychiatry 16, 358–360 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulting, G. L., et al. A functionally characterized test set of human induced pluripotent stem cells. Nature Biotechnol. 29, 279–286 (2011).

    Article  CAS  Google Scholar 

  • Braam, S. R., et al. Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res. 4, 107–116 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Son, E. Y., et al. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9, 205–218 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchetto, M. C., et al. Non-cell-autonomous effect of human SOD1 G37R astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell 3, 649–657 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Gold-von Simson, G., et al. Kinetin in familial dysautonomia carriers: implications for a new therapeutic strategy targeting mRNA splicing. Pediatr. Res. 65, 341–346 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Axelrod, F. B., et al. Kinetin improves IKBKAP mRNA splicing in patients with familial dysautonomia. Pediatr. Res. 70, 480–483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pini, G., et al. IGF1 as a potential treatment for Rett syndrome: safety assessment in six Rett patients. Autism research and treatment 2012, Article ID 679801 (2012).

  • Zhang, Q., et al. Preparation of uniaxial multichannel silk fibroin scaffolds for guiding primary neurons. Acta Biomater. 8, 2628–2638 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Major, T., et al. Transgene excision has no impact on in vivo integration of human iPS derived neural precursors. PloS one 6, e24687 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, N., An, M. C., Montoro, D. & Ellerby, L. M. Characterization of human Huntington's disease cell model from induced pluripotent stem cells. PLoS currents 2, RRN1193 (2010).

    Article  PubMed  PubMed Central  Google Scholar