nature.com

Prions and their lethal journey to the brain - Nature Reviews Microbiology

  • ️MacPherson, G. Gordon
  • ️Mon Feb 06 2006
  • Will, R. G., Alpers, M. P., Dormont, D. & Schonberger, L. B. Infectious and sporadic prion diseases. In Prion Biology and Diseases (ed. Prusiner, S. B.) 629–693 (Cold Spring Harbor Laboratory Press, New York, 2004).

    Google Scholar 

  • Hill, A. F. & Collinge, J. Subclinical prion infection. Trends Microbiol. 11, 578–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Peden, A. H., Head, M. W., Ritchie, D. L., Bell, J. E. & Ironside, J. W. Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet 354, 527–529 (2004).

    Article  Google Scholar 

  • Castilla, J., Saá, P. & Soto, C. Detection of prions in blood. Nature Med. 11, 982–985 (2005). Describes the development of technology that might allow the early diagnosis of TSE diseases from blood samples.

    Article  CAS  PubMed  Google Scholar 

  • Büeler, H. et al. Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347 (1993).

    Article  PubMed  Google Scholar 

  • Bolton, D. C., McKinley, M. P. & Prusiner, S. B. Identification of a protein that purifies with the scrapie prion. Science 218, 1309–1311 (1982). Describes the discovery of PrPSc from a hamster infected with scrapie.

    Article  CAS  PubMed  Google Scholar 

  • Prusiner, S. B. et al. Further purification and characterisation of scrapie prions. Biochemistry 21, 6942–6950 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Legname, G. et al. Synthetic mammalian prions. Science 305, 673–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  • van Keulen, L. J. M. et al. Immunohistological detection of prion protein in lymphoid tissues of sheep with natural scrapie. J. Clin. Microbiol. 34, 1228–1231 (1996). Shows that, when polymerized into β-sheet-rich amyloid fibrils (synthetic prions), recombinant mouse PrP can transmit disease when injected into transgenic mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sigurdson, C. J. et al. Oral transmission and early lymphoid tropism of chronic wasting disease PrPres in mule deer fawns (Odocoileus hemionus). J. Gen. Virol. 80, 2757–2764 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Hadlow, W. J., Race, R. E. & Kennedy, R. C. Temporal distribution of transmissible mink encephalopathy virus in mink inoculated subcutaneously. J. Virol. 61, 3235–3240 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hilton, D., Fathers, E., Edwards, P., Ironside, J. & Zajicek, J. Prion immunoreactivity in appendix before clinical onset of variant Creutzfeldt–Jakob disease. Lancet 352, 703–704 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Terry, L. A. et al. Detection of disease-specific PrP in the distal ileum of cattle exposed orally to the agent of bovine spongiform encephalopathy. Vet. Rec. 152, 387–392 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Wadsworth, J. D. F. et al. Tissue distribution of protease resistant prion protein in variant Creutzfeldt–Jakob disease using a highly sensitive immunoblotting assay. Lancet 358, 171–180 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Foster, J. D., Parnham, D. W., Hunter, N. & Bruce, M. Distribution of the prion protein in sheep terminally affected with BSE following experimental oral transmission. J. Gen. Virol. 82, 2319–2326 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Glatzel, M., Abela, E., Maissen, M. & Aguzzi, A. Extraneural pathological prion protein in sporadic Creutzfeldt–Jakob disease. New Engl. J. Med. 349, 1812–1820 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey, M. et al. Occurrence and distribution of infection-specific PrP in tissues of clinical scrapie cases and cull sheep from scrapie-affected farms in Shetland. J. Comp. Pathol. 127, 264–273 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Benestad, S. L. et al. Cases of scrapie with unusual features in Norway and designation of new type, Nor98. Vet. Rec. 153, 202–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Mabbott, N. A., Young, J., McConnell, I. & Bruce, M. E. Follicular dendritic cell dedifferentiation by treatment with an inhibitor of the lymphotoxin pathway dramatically reduces scrapie susceptibility. J. Virol. 77, 6845–6854 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prinz, M. et al. Oral prion infection requires normal numbers of Peyer's patches but not of enteric lymphocytes. Am. J. Pathol. 162, 1103–1111 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser, H. & Dickinson, A. G. Pathogenesis of scrapie in the mouse: the role of the spleen. Nature 226, 462–463 (1970).

    Article  CAS  PubMed  Google Scholar 

  • Mohan, J., Bruce, M. E. & Mabbott, N. A. Follicular dendritic cell dedifferentiation reduces scrapie susceptibility following inoculation via the skin. Immunology 114, 225–234 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitamoto, T., Muramoto, T., Mohri, S., Doh-Ura, K. & Tateishi, J. Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt–Jakob disease. J. Virol. 65, 6292–6295 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill, A. F. et al. Investigation of variant Creutzfeldt–Jakob disease and other prion diseases with tonsil biopsy samples. Lancet 353, 183–189 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Sigurdson, C. J. et al. PrPCWD lymphoid cell targets in early and advanced chronic wasting disease of mule deer. J. Gen. Virol. 83, 2617–2628 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Mabbott, N. A. et al. Tumor necrosis factor-α-deficient, but not interleukin-6-deficient, mice resist peripheral infection with scrapie. J. Virol. 74, 3338–3344 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffrey, M., McGovern, G., Goodsir, C. M., Brown, K. L. & Bruce, M. E. Sites of prion protein accumulation in scrapie-infected mouse spleen revealed by immuno-electron microscopy. J. Pathol. 191, 323–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Mabbott, N. A., Mackay, F., Minns, F. & Bruce, M. E. Temporary inactivation of follicular dendritic cells delays neuroinvasion of scrapie. Nature Med. 6, 719–720 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Montrasio, F. et al. Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288, 1257–1259 (2000). References 28 and 29 show that depletion of FDCs blocks TSE agent accumulation in the spleen following intraperitoneal inoculation and delays neuroinvasion.

    Article  CAS  PubMed  Google Scholar 

  • Mohan, J., Bruce, M. E. & Mabbott, N. A. Neuroinvasion by scrapie following inoculation via the skin is independent of migratory Langerhans cells. J. Virol. 79, 1888–1897 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackay, F. & Browning, J. L. Turning off follicular dendritic cells. Nature 395, 26–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Klein, M. A. et al. A crucial role for B cells in neuroinvasive scrapie. Nature 390, 687–691 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Prinz, M. et al. Lymph nodal prion replication and neuroinvasion in mice devoid of follicular dendritic cells. Proc. Natl Acad. Sci. USA 99, 919–924 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mabbott, N. A., McGovern, G., Jeffrey, M. & Bruce, M. E. Temporary blockade of the tumour necrosis factor signaling pathway impedes the spread of scrapie to the brain. J. Virol. 76, 5131–5139 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguzzi, A. & Sigurdson, C. J. Antiprion immunotherapy: to suppress or to stimulate? Nature Rev. Immunol. 4, 725–736 (2004).

    Article  CAS  Google Scholar 

  • Brown, K. L. et al. Scrapie replication in lymphoid tissues depends on PrP-expressing follicular dendritic cells. Nature Med. 5, 1308–1312 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Manson, J. C., Clarke, A. R., McBride, P. A., McConnell, I. & Hope, J. PrP gene dosage determines the timing but not the final intensity or distribution of lesions in scrapie pathology. Neurodegeneration 3, 331–340 (1994).

    CAS  PubMed  Google Scholar 

  • Barclay, G. R., Houston, E. F., Halliday, S. I., Farquhar, C. F. & Turner, M. L. Comparative analysis of normal prion protein expression on human, rodent, and ruminant blood cells by using a panel of prion antibodies. Transfusion 42, 517–526 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Klein, M. A. et al. PrP expression in B lymphocytes is not required for prion neuroinvasion. Nature Med. 4, 1429–1433 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Mohan, J., Brown, K. L., Farquhar, C. F., Bruce, M. E. & Mabbott, N. A. Scrapie transmission following exposure through the skin is dependent on follicular dendritic cells in lymphoid tissues. J. Dermatol. Sci. 35, 101–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Montrasio, F. et al. B-lymphocyte-restricted expression of the prion protein does not enable prion replication in PrP knockout mice. Proc. Natl Acad. Sci. USA 98, 4034–4037 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raeber, A. J. et al. Ectopic expression of prion protein (PrP) in T lymphocytes or hepatocytes of PrP knockout mice is insufficient to sustain prion replication. Proc. Natl Acad. Sci. USA 96, 3987–3992 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lötscher, M., Recher, M., Hunzinker, L. & Klein, M. A. Immunologically induced, complement-dependent up-regulation of the prion protein in the mouse spleen: follicular dendritic cells versus capsule and trabeculae. J. Immunol. 170, 6040–6047 (2003).

    Article  PubMed  Google Scholar 

  • van den Berg, T. K., Yoshida, K. & Dijkstra, C. D. Mechanisms of immune complex trapping by follicular dendritic cells. Curr. Top. Microbiol. Immunol. 201, 49–63 (1995).

    CAS  PubMed  Google Scholar 

  • Klein, M. A. et al. Complement facilitates early prion pathogenesis. Nature Med. 7, 488–492 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Mabbott, N. A., Bruce, M. E., Botto, M., Walport, M. J. & Pepys, M. B. Temporary depletion of complement component C3 or genetic deficiency of C1q significantly delays onset of scrapie. Nature Med. 7, 485–487 (2001). References 45 and 46 show that complement components contribute to the early localization of TSE agents to the lymphoid tissues.

    Article  CAS  PubMed  Google Scholar 

  • Blanquet-Grossard, F., Thielens, N. M., Vendrely, C., Jamin, M. & Arlaud, G. J. Complement protein C1q recognizes a conformationally modified form of the prion protein. Biochemistry 44, 4349–4356 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Mabbott, N. A. The complement system in prion diseases. Curr. Opin. Immunol. 16, 587–593 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Schwaeble, W. et al. Follicular dendritic cells, interdigitating cells, and cells of the monocyte-macrophage lineage are the C1q-producing sources in the spleen. J. Immunol. 155, 4971–4978 (1995).

    CAS  PubMed  Google Scholar 

  • McGovern, G., Brown, K. L., Bruce, M. E. & Jeffrey, M. Murine scrapie infection causes an abnormal germinal centre reaction in the spleen. J. Comp. Pathol. 130, 181–194 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Blättler, T. et al. PrP-expressing tissue required for transfer of scrapie infectivity from spleen to brain. Nature 389, 69–73 (1997).

    Article  PubMed  Google Scholar 

  • Kaeser, P. S., Klein, M. A., Schwarz, P. & Aguzzi, A. Efficient lymphoreticular prion propagation requires PrPc in stromal and hematopoietic cells. J. Virol. 75, 7097–7106 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartz, J. C., DeJoia, C., Tucker, T., Kincaid, A. E. & Bessen, R. A. Extraneural prion neuroinvasion without lymphoreticular system infection. J. Virol. 79, 11858–11863 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neutra, M. R., Frey, A. & Kraehenbuhl, J. -P. Epithelial M cells: gateways for mucosal infection and immunization. Cell 86, 345–348 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Heppner, F. L. et al. Transepithelial prion transport by M cells. Nature Med. 7, 976–977 (2001). Shows that M cells have the potential to transport TSE agents across the intestinal epithelium.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, R. S. et al. Protease-resistant human prion protein and ferritin are cotransported across Caco-2 epithelial cells: Implications for species barrier in prion uptake from the intestine. J. Neurosci. 24, 11280–11290 (2004). Shows that intestinal epithelial cells can translocate PrPSc in a ferritin-dependent manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beekes, M. & McBride, P. A. Early accumulation of pathological PrP in the enteric nervous system and gut-associated lymphoid tissue of hamsters orally infected with scrapie. Neurosci. Lett. 278, 181–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Herrmann, L. M., Cheevers, W. P., Davis, W. C., Knowles, D. P. & O'Rourke, K. I. CD21-positive follicular dendritic cells: a possible source of PrPSc in lymph node macrophages of scrapie-infected sheep. Am. J. Pathol. 162, 1075–1081 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carp, R. I. & Callahan, S. M. In vitro interaction of scrapie agent and mouse peritoneal macrophages. Intervirology 16, 8–13 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Carp, R. I. & Callahan, S. M. Effect of mouse peritoneal macrophages on scrapie infectivity during extended in vitro incubation. Intervirology 17, 201–207 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Maignien, T. et al. Role of gut macrophages in mice orally contaminated with scrapie or BSE. Int. J. Pharm. 298, 293–304 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Beringue, V. et al. Role of spleen macrophages in the clearance of scrapie agent early in pathogenesis. J. Pathol. 190, 495–502 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Cunningham, C., Wilcockson, D. C., Boche, D. & Perry, V. H. Comparison of inflammatory and acute-phase responses in the brain and peripheral organs of the ME7 model of prion disease. J. Virol. 79, 5174–5184 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prinz, M. et al. Prion pathogenesis in the absence of Toll-like receptor signalling. EMBO Rep. 4, 195–199 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, F. -P., Farquhar, C. F., Mabbott, N. A., Bruce, M. E. & MacPherson, G. G. Migrating intestinal dendritic cells transport PrPSc from the gut. J. Gen. Virol. 83, 267–271 (2002). Shows that a subpopulation of migratory DCs can acquire disease-specific PrP from the intestine.

    Article  CAS  PubMed  Google Scholar 

  • Endres, R. et al. Mature follicular dendritic cell networks depend on expression of lymphotoxin β receptor by radioresistant stromal cells and of lymphotoxin β and tumour necrosis factor by B cells. J. Exp. Med. 189, 159–168 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapasi, Z. F., Burton, G. F., Schultz, L. D., Tew, J. G. & Szakal, A. K. Induction of functional follicular dendritic cell development in severe combined immunodeficiency mice. J. Immunol. 150, 2648–2658 (1993).

    CAS  PubMed  Google Scholar 

  • Shortman, K. & Liu, Y. -J. Mouse and human dendritic cell subtypes. Nature Rev. Immunol. 2, 151–161 (2002).

    Article  CAS  Google Scholar 

  • Liu, M. & MacPherson, G. G. Antigen acquisition by dendritic cells: intestinal dendritic cells acquire antigen administered orally and can prime naive T cells in vivo. J. Exp. Med. 177, 1299–1307 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunol. 2, 361–367 (2001).

    Article  CAS  Google Scholar 

  • Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Luhr, K. M. et al. Processing and degradation of exogenous prion protein by CD11c+ myeloid dendritic cells in vitro. J. Virol. 76, 12259–12264 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohan, J., Hopkins, J. & Mabbott, N. A. Skin-derived dendritic cells acquire and degrade the scrapie agent following in vitro exposure. Immunology 116, 122–133 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luhr, K. M. et al. Scrapie protein degradation by cysteine proteases in CD11c+ dendritic cells and GT1-neuronal cells. J. Virol. 78, 4776–4782 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wykes, M., Pombo, A., Jenkins, C. & MacPherson, G. G. Dendritic cells interact directly with naive B lymphocytes to transfer antigen and initiate class switching in a primary T-dependent response. J. Immunol. 161, 1313–1319 (1998).

    CAS  PubMed  Google Scholar 

  • Huang, F. -P. et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191, 435–443 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneider, N. C., Kaser, A., Dunzendorfer, S., Tilg, H. & Wiedermann, C. J. Sphingosine kinase-dependent migration of immature dendritic cells in response to neurotoxic prion protein fragment. J. Virol. 77, 5535–5539 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneider, N. C. et al. Neurokinin-1 receptor interacts with PrP106–126-induced dendritic cell migration and interaction. J. Neuroimmunol. 158, 153–158 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Pugh, C. W., MacPherson, G. G. & Steer, H. W. Characterization of non-lymphoid cells derived from rat peripheral lymph. J. Exp. Med. 157, 1758–1779 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, L., Zhang, M., Jenkins, C. & MacPherson, G. G. Dendritic cell heterogeneity in vivo: two functionally different dendritic cell populations in rat intestinal lymph can be distinguished by CD4 expression. J. Immunol. 161, 1146–1155 (1998).

    CAS  PubMed  Google Scholar 

  • Oldstone, M. B. A. et al. Lymphotoxin-α- and lymphotoxin-β-deficient mice differ in susceptibility to scrapie: evidence against dendritic cell involvement. J. Virol. 76, 4357–4363 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser, H. et al. Replication of scrapie in spleens of SCID mice follows reconstitution with wild-type mouse bone marrow. J. Gen. Virol. 77, 1935–1940 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Berney, C. et al. A member of the dendritic cell family that enters B cell follicles and stimulates primary antibody responses identified by a mannose receptor fusion protein. J. Exp. Med. 190, 851–860 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, P. et al. B cells control the migration of a subset of dendritic cells into B cell follicles via CXC chemokine ligand 13 in a lymphotoxin-dependent fashion. J. Immunol. 168, 5117–5123 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Denzer, K., Kleijmeer, M. J., Heijnen, H. F. G., Stoorvogel, W. & Geuze, H. J. Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J. Cell Sci. 113, 3365–3374 (2000).

    CAS  PubMed  Google Scholar 

  • Fevrier, B. et al. Cells release prions in association with exosomes. Proc. Natl Acad. Sci. USA 101, 9683–9688 (2004). Shows that PrPSc released from infected cells by exosomes is infectious.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Théry, C., Zitvogel, L. & Amigorena, S. Exosomes: composition, biogenesis and function. Nature Rev. Immunol. 2, 569–579 (2002).

    Article  CAS  Google Scholar 

  • Denzer, K. et al. Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J. Immunol. 165, 1259–1265 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Gould, S. J., Booth, A. M. & Hildreth, J. E. K. The trojan exosome hypothesis. Proc. Natl Acad. Sci. USA 100, 10592–10597 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, D. G., Booth, A., Gould, S. J. & Hildreth, J. E. Evidence that HIV budding in primary macrophages occurs through the exosome release pathway. J. Biol. Chem. 278, 52347–52354 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Beekes, M., Baldauf, E. & Diringer, H. Sequential appearance and accumulation of pathognomonic markers in the central nervous system of hamsters orally infected with scrapie. J. Gen. Virol. 77, 1925–1934 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Baldauf, E., Beekes, M. & Diringer, H. Evidence for an alternative direct route of access for the scrapie agent to the brain bypassing the spinal cord. J. Gen. Virol. 78, 1187–1197 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Beekes, M., McBride, P. A. & Baldauf, E. Cerebral targeting indicates vagal spread of infection in hamsters fed with scrapie. J. Gen. Virol. 79, 601–607 (1998).

    Article  CAS  PubMed  Google Scholar 

  • McBride, P. A. & Beekes, M. Pathological PrP is abundant in sympathetic and sensory ganglia of hamsters fed with scrapie. Neurosci. Lett. 265, 135–138 (1999).

    Article  CAS  PubMed  Google Scholar 

  • McBride, P. A. et al. Early spread of scrapie from the gastrointestinal tract to the central nervous system involves autonomic fibers of the splanchnic and vagus nerves. J. Virol. 75, 9320–9327 (2001). Detailed analysis of the early spread of disease-specific PrP through the peripheral nervous system in orally inoculated rodents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heggebø, R. et al. Disease associated PrP in the enteric nervous system of scrapie-affected sheep. J. Gen. Virol. 84, 1327–1338 (2003).

    Article  PubMed  CAS  Google Scholar 

  • van Keulen, L. J., Schreuder, B. E., Vromans, M. E., Langeveld, J. P. & Smits, M. A. Pathogenesis of natural scrapie in sheep. Arch. Virol. Suppl. 16, 57–71 (2000).

    Google Scholar 

  • Sigurdson, C. J., Spraker, T. R., Miller, M. W., Oesch, B. & Hoover, E. A. PrPCWD in the myenteric plexus, vagosympathetic trunk and endocrine glands of deer with chronic wasting disease. J. Gen. Virol. 82, 2327–2334 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Haïk, S. et al. The sympathetic nervous system is involved in variant Creutzfeldt–Jakob disease. Nature Med. 9, 1121–1123 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Glatzel, M., Heppner, F. L., Albers, K. M. & Aguzzi, A. Sympathetic innervation of lymphoreticular organs is rate limiting for prion neuroinvasion. Neuron 31, 25–34 (2001). Shows that depletion of sympathetic nerves prevents TSE agent neuroinvasion following peripheral inoculation.

    Article  CAS  PubMed  Google Scholar 

  • Glatzel, M. & Aguzzi, A. PrPc expression in the peripheral nervous system is a determinant of prion neuroinvasion. J. Gen. Virol. 81, 2813–2821 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Race, R., Oldstone, M. & Chesebro, B. Entry versus blockade of brain infection following oral or intraperitoneal scrapie administration: role of prion protein expression in peripheral nerves and spleen. J. Gen. Virol. 74, 828–833 (2000).

    Article  CAS  Google Scholar 

  • Felten, S. Y. & Felten, D. L. Innervation of lymphoid tissue. In Psychoneuroimmunology (eds Ader, R., Felten, D. & Cohen, N.) 27–69 (Academic Press Inc., San Diego, 1991). Detailed illustrated description of the innervation of lymphoid tissues.

    Chapter  Google Scholar 

  • Defaweux, V. et al. Interfaces between dendritic cells, other immune cells, and nerve fibres in mouse Peyer's patches: potential sites for neuroinvasion in prion diseases. Microsc. Res. Tech. 66, 1–9 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Hosoi, J. et al. Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide. Nature 363, 159–163 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Aucouturier, P. et al. Infected splenic dendritic cells are sufficient for prion transmission to the CNS in mouse scrapie. J. Clin. Invest. 108, 703–708 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prinz, M. et al. Positioning of follicular dendritic cells within the spleen controls prion neuroinvasion. Nature 425, 957–962 (2003). Shows that the rate of TSE agent neuroinvasion from the spleen is proportional to the distance between FDCs and sympathetic nerves.

    Article  CAS  PubMed  Google Scholar 

  • Brown, P. The risk of blood-borne Creutzfeldt–Jakob disease. In Transmissible Subacute Spongiform Encephalopathies: Prion Diseases (eds. Court, L. & Dodet, B.) 447–450 (Elsevier, Paris, 1996).

    Google Scholar 

  • Llewelyn, C. A. et al. Possible transmission of variant Creutzfeldt–Jakob disease by blood transfusion. Lancet 363, 417–421 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Hunter, N. et al. Transmission of prion diseases by blood transfusion. J. Gen. Virol. 83, 2897–2905 (2002). Shows that TSE agent transmission can occur by blood transmission from a pre-clinical donor.

    Article  CAS  PubMed  Google Scholar 

  • Brown, P. et al. The distribution of infectivity in blood components and plasma derivatives in experimental models of transmissible spongiform encephalopathy. Transfusion 38, 810–816 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Rosicarelli, B. et al. Migration of dendritic cells into the brain in a mouse model of prion disease. J. Neuroimmunol. 165, 114–120 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Lewicki, H. et al. T cells infiltrate the brain in murine and human transmissible spongiform encephalopathies. J. Virol. 77, 3799–3808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong, R. A., Cairns, N. J., Ironside, J. W. & Lantos, P. L. Does the neuropathology of human patients with variant Creutzfeldt–Jakob disease reflect haematogenous spread of the disease? Neurosci. Lett. 348, 37–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Burton, G. F., Brandon, F. K., Estes, J. D., Thacker, T. C. & Gartner, S. Follicular dendritic cell contributions to HIV pathogenesis. Sem. Immunol. 14, 275–284 (2002).

    Article  CAS  Google Scholar 

  • Banki, Z. et al. Complement dependent trapping of infectious HIV in human lymphoid tissues. AIDS 19, 481–486 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Wadsworth, J. D. F. et al. Human prion protein with valine 129 prevents expression of variant CJD phenotype. Science 306, 1793–1796 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Goldmann, W., Hunter, N., Smith, G., Foster, J. & Hope, J. PrP genotype and agent effects in scrapie: change in allelic interaction with different isolates of agent in sheep, a natural host of scrapie. J. Gen. Virol. 75, 989–995 (1994). Shows that the PRNP genotype can affect susceptibility to scrapie in sheep.

    Article  CAS  PubMed  Google Scholar 

  • Thackray, A. M., McKenzie, A. N., Klein, M. A., Lauder, A. & Bujdoso, R. Accelerated prion disease in the absence of interleukin-10. J. Virol. 78, 13697–13707 (2004). Shows that intestinal inflammation can dramatically affect TSE disease pathogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heikenwalder, M. et al. Chronic lymphocytic inflammation specifies the organ tropism of prions. Science 307, 1107–1110 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Seeger, H. et al. Coincident scrapie infection and nephritis lead to urinary prion excretion. Science 310, 324–326 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Ligios, C. et al. PrPSc in mammary glands of sheep affected by scrapie and mastitis. Nature Med. 11, 1137–1138 (2005). Shows that natural chronic inflammatory conditions and coincident natural scrapie can expand the deposition of PrPSc within sheep tissues.

    Article  CAS  PubMed  Google Scholar 

  • Stahl, N., Borchelt, D. R., Hsiao, K. & Prusiner, S. B. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51, 229–240 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Pan, K. -M. et al. Conversion of α-helices into β-sheets features in the formation of the scrapie prion protein. Proc. Natl Acad. Sci. USA 90, 10962–10966 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riek, R., Hornemann, S., Wider, G., Glockshuber, R. & Wuthrich, K. NMR characterization of the full-length recombinant murine prion protein, mPrP(23–231). FEBS Lett. 413, 282–288 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Tobler, I. et al. Altered circadian activity rythyms and sleep in mice devoid of prion protein. Nature 380, 639–642 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Bueler, H. et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Caughey, B. W. et al. Secondary structure analysis of the scrapie-associated protein PrP 27–30 in water by infrared spectroscopy. Biochemistry 30, 7672–7680 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Safar, J. G. et al. Search for prion-specific nucleic acid. J. Virol. 79, 10796–10806 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982). An important milestone in TSE disease research. Description of the 'prion' hypothesis.

    Article  CAS  PubMed  Google Scholar 

  • Silveira, J. R. et al. The most infectious prion particles. Nature 437, 257–261 (2005). Shows that non-fibrillar particles, comprising approximately 14–28 PrP molecules, are the most efficient initiators of TSE disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imazeki, N., Senoo, A. & Fuse, Y. Is the follicular dendritic cell a primarily stationary cell? Immunology 76, 508–510 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandel, T. E., Phipps, R. P., Abbot, A. & Tew, J. G. The follicular dendritic cell: long term antigen retention during immunity. Immunol. Rev. 53, 29–59 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, K., van den Berg, T. K. & Dijkstra, C. D. Two functionally different follicular dendritic cells in secondary lymphoid follicles of mouse spleen, as revealed by CR1/2 and FcRγII-mediated immune-complex trapping. Immunology 80, 34–39 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kosco-Vilbois, M. H. Are follicular dendritic cells really good for nothing? Nature Rev. Immunol. 3, 764–769 (2003).

    Article  CAS  Google Scholar 

  • Haberman, A. M. & Shlomchik, M. J. Reassessing the function of immune-complex retention by follicular dendritic cells. Nature Rev. Immunol. 3, 757–764 (2003).

    Article  CAS  Google Scholar