nature.com

Evolution of diverse cell division and vesicle formation systems in Archaea - Nature Reviews Microbiology

  • ️Koonin, Eugene V.
  • ️Mon Sep 06 2010
  • Margolin, W. Sculpting the bacterial cell. Curr. Biol. 19, R812–R822 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hildebrandt, E. R. & Hoyt, M. A. Mitotic motors in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1496, 99–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kunda, P. & Baum, B. The actin cytoskeleton in spindle assembly and positioning. Trends Cell Biol. 19, 174–179 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Lowe, J. & Amos, L. A. Evolution of cytomotive filaments: the cytoskeleton from prokaryotes to eukaryotes. Int. J. Biochem. Cell Biol. 41, 323–329 (2009).

    Article  PubMed  Google Scholar 

  • Lowe, J., van den Ent, F. & Amos, L. A. Molecules of the bacterial cytoskeleton. Annu. Rev. Biophys. Biomol. Struct. 33, 177–198 (2004).

    Article  PubMed  Google Scholar 

  • van den Ent, F., Amos, L. A. & Lowe, J. Prokaryotic origin of the actin cytoskeleton. Nature 413, 39–44 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Adams, D. W. & Errington, J. Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nature Rev. Microbiol. 7, 642–653 (2009).

    Article  CAS  Google Scholar 

  • Vats, P., Yu, J. & Rothfield, L. The dynamic nature of the bacterial cytoskeleton. Cell. Mol. Life Sci. 66, 3353–3362 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova, K. S. & Koonin, E. V. Comparative genomics of archaea: how much have we learned in six years, and what's next? Genome Biol. 4, 115 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gribaldo, S. & Brochier-Armanet, C. The origin and evolution of Archaea: a state of the art. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 1007–1022 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernander, R. The archaeal cell cycle: current issues. Mol. Microbiol. 48, 599–604 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Bernander, R., Lundgren, M. & Ettema, T. J. Comparative and functional analysis of the archaeal cell cycle. Cell Cycle 9, 794–806 (2010).

    Article  PubMed  Google Scholar 

  • Robinson, N. P., Blood, K. A., McCallum, S. A., Edwards, P. A. & Bell, S. D. Sister chromatid junctions in the hyperthermophilic archaeon Sulfolobus solfataricus. EMBO J. 26, 816–824 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ettema, T. J. & Bernander, R. Cell division and the ESCRT complex: a surprise from the archaea. Commun. Integr. Biol. 2, 86–88 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samson, R. Y. & Bell, S. D. Ancient ESCRTs and the evolution of binary fission. Trends Microbiol. 17, 507–513 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Samson, R. Y., Obita, T., Freund, S. M., Williams, R. L. & Bell, S. D. A role for the ESCRT system in cell division in Archaea. Science 322, 1710–1713 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindas, A. C., Karlsson, E. A., Lindgren, M. T., Ettema, T. J. & Bernander, R. A unique cell division machinery in the Archaea. Proc. Natl Acad. Sci. USA 105, 18942–18946 (2008). This study and that described in reference 16 provide evidence that Sulfolobus spp. homologues of ESCRT-III and VPS4 are involved in cell division.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson, P. I., Shim, S. & Merrill, S. A. Cell biology of the ESCRT machinery. Curr. Opin. Cell Biol. 21, 568–574 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelet, X., Djeddi, A. & Legouis, R. Developmental and cellular functions of the ESCRT machinery in pluricellular organisms. Biol. Cell 102, 191–202 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Wollert, T. & Hurley, J. H. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464, 864–869 (2010). This article describes the in vitro reconstitution of the eukaryotic ESCRT system with purified proteins and model giant unilamellar vesicles. The work shows that ESCRT-I and ESCRT-II form membrane buds that are then cleaved at the neck by ESCRT-III.

  • Ortmann, A. C. et al. Transcriptome analysis of infection of the archaeon Sulfolobus solfataricus with Sulfolobus turreted icosahedral virus. J. Virol. 82, 4874–4883 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott, A. et al. Structure and ESCRT-III protein interactions of the MIT domain of human VPS4A. Proc. Natl Acad. Sci. USA 102, 13813–13818 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuchell-Brereton, M. D. et al. ESCRT-III recognition by VPS4 ATPases. Nature 449, 740–744 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Wurtzel, O. et al. A single-base resolution map of an archaeal transcriptome. Genome Res. 20, 133–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hett, E. C. & Rubin, E. J. Bacterial growth and cell division: a mycobacterial perspective. Microbiol. Mol. Biol. Rev. 72, 126–156 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sureka, K. et al. Novel role of phosphorylation-dependent interaction between FtsZ and FipA in mycobacterial cell division. PLoS One 5, e8590 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Thakur, M. & Chakraborti, P. K. GTPase activity of mycobacterial FtsZ is impaired due to its transphosphorylation by the eukaryotic-type Ser/Thr kinase, PknA. J. Biol. Chem. 281, 40107–40113 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Adindla, S., Inampudi, K. K., Guruprasad, K. & Guruprasad, L. Identification and analysis of novel tandem repeats in the cell surface proteins of archaeal and bacterial genomes using computational tools. Comp. Funct. Genomics 5, 2–16 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwaya, N. et al. A common substrate recognition mode conserved between katanin P60 and VPS4 governs microtubule severing and membrane skeleton reorganization. J. Biol. Chem. 285, 16822–16829 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaughan, S., Wickstead, B., Gull, K. & Addinall, S. G. Molecular evolution of FtsZ protein sequences encoded within the genomes of Archaea, Bacteria, and Eukaryota. J. Mol. Evol. 58, 19–29 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Makarova, K. S. & Koonin, E. V. Two new families of the FtsZ-tubulin protein superfamily implicated in membrane remodeling in diverse bacteria and archaea. Biol. Direct 5, 33 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamoen, L. W., Meile, J. C., de Jong, W., Noirot, P. & Errington, J. SepF, a novel FtsZ-interacting protein required for a late step in cell division. Mol. Microbiol. 59, 989–999 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Marbouty, M., Saguez, C., Cassier-Chauvat, C. & Chauvat, F. Characterization of the FtsZ-interacting septal proteins SepF and Ftn6 in the spherical-celled cyanobacterium Synechocystis strain PCC 6803. J. Bacteriol. 191, 6178–6185 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn, C., Paulmann, B., Kerlen, G., Junker, N. & Huber, H. In vivo observation of cell division of anaerobic hyperthermophiles by using a high-intensity dark-field microscope. J. Bacteriol. 181, 5114–5118 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundgren, M., Malandrin, L., Eriksson, S., Huber, H. & Bernander, R. Cell cycle characteristics of crenarchaeota: unity among diversity. J. Bacteriol. 190, 5362–5367 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yutin, N., Wolf, M. Y., Wolf, Y. I. & Koonin, E. V. The origins of phagocytosis and eukaryogenesis. Biol. Direct 4, 9 (2009). This study describes archaeal actin-like proteins and suggests a hypothetical scenario of eukaryogenesis. In this scenario, the archaeal ancestor of eukaryotes possessed an actin-based cytoskeleton, including branched filaments, that allowed this organism to produce actin-supported membrane protrusions, and these protrusions facilitated engulfment of other bacteria and archaea.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pollard, T. D. & Cooper, J. A. Actin, a central player in cell shape and movement. Science 326, 1208–1212 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Easter, J. Jr & Gober, J. W. ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities. Mol. Cell 10, 427–434 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Springer, T. A. Complement and the multifaceted functions of VWA and integrin I domains. Structure 14, 1611–1616 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittaker, C. A. & Hynes, R. O. Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol. Biol. Cell 13, 3369–3387 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prangishvili, D. et al. Sulfolobicins, specific proteinaceous toxins produced by strains of the extremely thermophilic archaeal genus Sulfolobus. J. Bacteriol. 182, 2985–2988 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellen, A. F. et al. Proteomic analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles 13, 67–79 (2009). This work demonstrates that Sulfolobus spp. ESCRT-III and VPS4 homologues are found in secreted vesicles, suggesting that they may play a part in the biogenesis of these vesicles.

    Article  CAS  PubMed  Google Scholar 

  • Soler, N., Marguet, E., Verbavatz, J. M. & Forterre, P. Virus-like vesicles and extracellular DNA produced by hyperthermophilic archaea of the order Thermococcales. Res. Microbiol. 159, 390–399 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Makarova, K. S., Sorokin, A. V., Novichkov, P. S., Wolf, Y. I. & Koonin, E. V. Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea. Biol. Direct 2, 33 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • Csuros, M. & Miklos, I. Streamlining and large ancestral genomes in Archaea inferred with a phylogenetic birth-and-death model. Mol. Biol. Evol. 26, 2087–2095 (2009). A sophisticated maximum-likelihood reconstruction of archaeal genome evolution that infers highly complex ancestors of the Archaea.

    Article  PubMed  PubMed Central  Google Scholar 

  • Embley, T. M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature 440, 623–630 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Pisani, D., Cotton, J. A. & McInerney, J. O. Supertrees disentangle the chimerical origin of eukaryotic genomes. Mol. Biol. Evol. 24, 1752–1760 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R. & Embley, T. M. The archaebacterial origin of eukaryotes. Proc. Natl Acad. Sci. USA 105, 20356–20361 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yutin, N., Makarova, K. S., Mekhedov, S. L., Wolf, Y. I. & Koonin, E. V. The deep archaeal roots of eukaryotes. Mol. Biol. Evol. 25, 1619–1630 (2008). This and references 47 and 48 provide detailed analyses of the contributions of different groups of archaea to the evolution of eukaryotes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carballido-Lopez, R. & Formstone, A. Shape determination in Bacillus subtilis. Curr. Opin. Microbiol. 10, 611–616 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Graumann, P. L. Dynamics of bacterial cytoskeletal elements. Cell. Motil. Cytoskeleton 66, 909–914 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Leaver, M., Dominguez-Cuevas, P., Coxhead, J. M., Daniel, R. A. & Errington, J. Life without a wall or division machine in Bacillus subtilis. Nature 457, 849–853 (2009). An intriguing study showing that, under highly defined conditions, FtsZ can be dispensible for viability in B. subtilis . The cells lacking FtsZ and cell walls divide by a bizarre budding–extrusion mechanism.

    Google Scholar 

  • Jenkins, C. et al. Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proc. Natl Acad. Sci. USA 99, 17049–17054 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilhofer, M., Rosati, G., Ludwig, W., Schleifer, K. H. & Petroni, G. Coexistence of tubulins and ftsZ in different Prosthecobacter species. Mol. Biol. Evol. 24, 1439–1442 (2007).

    Article  CAS  PubMed  Google Scholar 

  • McDonald, B. & Martin-Serrano, J. No strings attached: the ESCRT machinery in viral budding and cytokinesis. J. Cell Sci. 122, 2167–2177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shestakova, A. et al. Assembly of the AAA ATPase Vps4 on ESCRT-III. Mol. Biol. Cell 21, 1059–1071 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316, 1908–1912 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Morita, E. et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 26, 4215–4227 (2007). This work, along with that described in reference 57, provides the first evidence that the ESCRT machinery localizes to the midbody and is required for membrane abscission in human cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, D. et al. Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B. Nature Struct. Mol. Biol. 15, 1278–1286 (2008). This investigation shows that an ESCRT-III protein, Chmp1b, recruits the microtubule-severing ATPase, spastin, to the midbody through a MIT domain–MIM3 interaction.

    Article  CAS  Google Scholar 

  • Koonin, E. V. Orthologs, paralogs and evolutionary genomics. Annu. Rev. Genet. 39, 309–338 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Tatusov, R. L. et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tatusov, R. L., Koonin, E. V. & Lipman, D. J. A genomic perspective on protein families. Science 278, 631–637 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Brochier-Armanet, C., Boussau, B., Gribaldo, S. & Forterre, P. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Rev. Microbiol. 6, 245–252 (2008).

    Article  CAS  Google Scholar 

  • Elkins, J. G. et al. A korarchaeal genome reveals insights into the evolution of the archaea. Proc. Natl Acad. Sci. USA 105, 8102–8107 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarza, P. et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst. Appl. Microbiol. 31, 241–50 (2008).

    Article  CAS  PubMed  Google Scholar