nature.com

Microbial interactions: from networks to models - Nature Reviews Microbiology

  • ️Raes, Jeroen
  • ️Mon Jul 16 2012
  • Lidicker, W. Z. A. Clarification of interactions in ecological systems. Bioscience 29, 475–477 (1979).

    Article  Google Scholar 

  • Rodríguez-Martínez, J. M. & Pascual, A. Antimicrobial resistance in bacterial biofilms. Rev. Med. Microbiol. 17, 65–75 (2006).

    Article  Google Scholar 

  • Woyke, T. et al. Symbiotic insights through metagenomic analysis of a microbial consortium. Nature 443, 950–955 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Leschine, S. B. Cellulose degradation in anaerobic environments. Annu. Rev. Microbiol. 49, 399–426 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Gause, G. F. The Struggle for Existence (Williams & Wilkins, 1934).

    Book  Google Scholar 

  • Raes, J., Foerstner, K. U. & Bork, P. Get the most out of your metagenome: computational analysis of environmental sequence data. Curr. Opin. Microbiol. 10, 1–9 (2007).

    Article  CAS  Google Scholar 

  • Dubelaar, G. B. J. & Jonker, R. R. Flow cytometry as a tool for the study of phytoplankton. Sci. Mar. 64, 135–156 (2000).

    Article  Google Scholar 

  • Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, 1556–1573 (2007).

    Article  CAS  Google Scholar 

  • Lane, D. J. et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl Acad. Sci. USA 82, 6955–6959 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamady, M. & Knight, R. Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res. 19, 1141–1152 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tringe, S. G. et al. Comparative metagenomics of microbial communities. Science 308, 554–557 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cole, J. R. et al. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141–D145 (2009).

    Article  CAS  PubMed  Google Scholar 

  • DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez, A. & Knight, R. Advancing analytical algorithms and pipelines for billions of microbial sequences. Curr. Opin. Biotechnol. 23, 64–71 (2012).

    Article  CAS  PubMed  Google Scholar 

  • De Smet, R. & Marchal, K. Advantages and limitations of current network inference methods. Nature Rev. Microbiol. 8, 717–729 (2010).

    Article  CAS  Google Scholar 

  • Veiga, D. F. T., Dutta, B. & Balázsi, G. Network inference and network response identification: moving genome-scale data to the next level of biological discovery. Mol. Biosyst. 6, 469–480 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Bonneau, R. et al. A predictive model for transcriptional control of physiology in a free living cell. Cell 131, 1354–1365 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Szklarczyk, D. et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39, D561–D568 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Milns, I., Beale, C. M. & Smith, V. A. Revealing ecological networks using Bayesian network inference algorithms. Ecology 91, 1892–1899 (2010).

    Article  PubMed  Google Scholar 

  • Agrawal, R., Imielinski, T. & Swami, A. Mining association rules between sets of items in large databases. ACM SIGMOD Record 22, 207–216 (1993).

    Article  Google Scholar 

  • Chaffron, S., Rehrauer, H., Pernthaler, J. & Von Mering, C. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 20, 947–959 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eiler, A., Heinrich, F. & Bertilsson, S. Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J. 6, 330–342 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Steele, J. A. et al. Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J. 5, 1414–1425 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 193–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive earth's biogeochemical cycles. Science 320, 1034–1039 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Hecker, M., Lambeck, S., Toepfer, S., van Someren, E. & Guthke, R. Gene regulatory network inference: data integration in dynamic models—a review. Biosystems 96, 86–103 (2009).

    Article  CAS  PubMed  Google Scholar 

  • May, R. M. Stability and Complexity in Model Ecosystems (Princeton Univ. Press, 1973).

    Google Scholar 

  • Mounier, J. et al. Microbial interactions within a cheese microbial community. Appl. Environ. Microbiol. 74, 172–181 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann, K. H. et al. Power law rank-abundance models for marine phage communities. FEMS Microbiol. Lett. 273, 224–228 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Thingstad, T. F. Elements of a theory for the mechanisms controlling abundance, diversity and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol. Oceanogr. 45, 1320–1328 (2000).

    Article  Google Scholar 

  • Rodriguez-Brito, B. et al. Viral and microbial community dynamics in four aquatic environments. ISME J. 4, 739–751 (2010).

    Article  PubMed  Google Scholar 

  • Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J. et al. Functional molecular ecological networks. mBio 1, e00169–e00110 (2010).

    PubMed  PubMed Central  Google Scholar 

  • Gilbert, J. A. et al. Defining seasonal marine microbial community dynamics. ISME J. 6, 298–308 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  • Freilich, S. et al. The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Res. 38, 3857–3868 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan, Q. et al. Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental factors. Bioinformatics 22, 2532–2538 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman, J. A. & Steele, J. A. Community structure of marine bacterioplankton: patterns, networks, and relationships to function aquat. Microb. Ecol. 53, 69–81 (2008).

    Article  Google Scholar 

  • The Human Microbiome Project Consortium. A framework for human microbiome research. Nature 486, 215–221 (2012).

  • Faust, K. & Sathirapongsasuti, J. F. et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. (in the press).

  • Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolenbrander, P. E. et al. Communication among oral bacteria. Microbiol. Mol. Biol. Rev. 66, 486–505 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl Acad. Sci. USA 108, 4680–4687 (2011).

    Article  PubMed  Google Scholar 

  • Jumpstart Consortium Human Microbiome Project Data Generation Working Group. Evaluation of 16S rDNA-based community profiling for human microbiome research. PLoS ONE 7, e39315 (2012).

  • Morgan, J. L., Darling, A. E. & Eisen, J. A. Metagenomic sequencing of an in vitro-simulated microbial community. PLoS ONE 5, e10209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raes, J. & Bork, P. Molecular eco-systems biology: towards an understanding of community function. Nature Rev. Microbiol. 6, 693–699 (2008).

    Article  CAS  Google Scholar 

  • Aitchison, J. A concise guide to compositional data analysis. Laboratório de Estatística e Geoinformação [online], http://www.leg.ufpr.br/lib/exe/fetch.php/pessoais:abtmartins:a_concise_guide_to_compositional_data_analysis.pdf (2003).

  • Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored ''rare biosphere''. Proc. Natl. Acad. Sci. USA 103, 12115–12120 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reshef, D. N. et al. Detecting novel associations in large data sets. Science 334, 1518–1524 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuczynski, J. et al. Microbial community resemblance methods differ in their ability to detect biologically relevant patterns. Nature Methods 7, 813–819 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gotelli, N. J. Null model analysis of species co-occurrence patterns. Ecology 81, 2606–2621 (2000).

    Article  Google Scholar 

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).

    Google Scholar 

  • Margolin, A. A. et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7 (Suppl. 1), S7 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opgen-Rhein, R. & Strimmer, K. From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst. Biol. 1, 37 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer, J. & Strimmer, K. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21, 754–764 (2005).

    Article  CAS  Google Scholar 

  • Schaefer, J. & Strimmer, K. A. Shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 4, 32 (2005).

    Google Scholar 

  • Freilich, S. et al. Competitive and cooperative metabolic interactions in bacterial communities. Nature Commun. 2, 589 (2011).

    Article  CAS  Google Scholar 

  • Brohée, S. et al. NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways. Nucleic Acids Res. 36, W444–W451 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Z. et al. VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Res. 37, W115–W121 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smoot, M., Ono, K., Ruscheinski, J., Wang, P. & Ideker, T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431–432 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Lima-Mendez, G. & van Helden, J. The powerful law of the power law and other myths in network biology. Mol. Biosyst. 5, 1482–1493 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Paine, R. T. A note on trophic complexity and community stability. Am. Nat. 103, 91–93 (1969).

    Article  Google Scholar 

  • May, R. M. Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science 186, 645–647 (1974).

    Article  CAS  PubMed  Google Scholar 

  • Becks, L., Hilker, F. M., Malchow, H., Jürgens, K. & Arndt, H. Experimental demonstration of chaos in a microbial food web. Nature 435, 1226–1229 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Harcombe, W. Novel cooperation experimentally evolved between species. Evolution 64, 2166–2172 (2010).

    PubMed  Google Scholar 

  • Kaeberlein, T., Lewis, K. & Epstein, S. S. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296, 1127–1129 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Nichols, D. et al. Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl. Environ. Microbiol. 76, 2445–2450 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valm, A. M. et al. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc. Natl Acad. Sci. USA 108, 4152–4157 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Park, J., Kerner, A., Burns, M. A. & Lin, X. N. Microdroplet-enabled highly parallel co-cultivation of microbial communities. PLoS ONE 6, e17019 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, H. J., Du, W. & Ismagilov, R. F. Complex function by design using spatially pre-structured synthetic microbial communities: degradation of pentachlorophenol in the presence of Hg(II). Integr. Biol. 3, 126–133 (2011).

    Article  CAS  Google Scholar 

  • Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Evol. Syst. 4, 1–23 (1973).

    Article  Google Scholar 

  • Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewontin, R. C. The meaning of stability. Brookhaven Symp. Biol. 22, 13–23 (1969).

    CAS  PubMed  Google Scholar 

  • Petraitis, P. S. & Dudgeon, S. R. Detection of alternative stable states in marine communities. J. Exp. Mar. Biol. Ecol. 300, 343–371 (2004).

    Article  Google Scholar 

  • Connell, J. H. & Sousa, W. P. On the evidence needed to judge ecological stability or persistence. Am. Nat. 121, 789–824 (1983).

    Article  Google Scholar 

  • Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl Acad. Sci. USA 108, 4578–4585 (2011).

    Article  PubMed  Google Scholar 

  • Fierer, N., Nemergut, D., Knight, R. & Craine, J. M. Changes through time: integrating microorganisms into the study of succession. Res. Microbiol. 161, 635–642 (2010).

    Article  PubMed  Google Scholar 

  • Trosvik, P., Stenseth, N. C. & Rudi, K. Convergent temporal dynamics of the human infant gut microbiota. ISME J. 4, 151–158 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Rosindell, J., Hubbell, S. P. & Etienne, R. S. The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol. Evol. 26, 340–348 (2011).

    Article  PubMed  Google Scholar 

  • West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. Social evolution theory for microorganisms. Nature Rev. Microbiol. 4, 597–607 (2006).

    Article  CAS  Google Scholar 

  • Zomorrodi, A. R. & Maranas, C. D. OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput. Biol. 8, e1002363 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson, F. H., Nookaew, I., Petranovic, D. & Nielsen, J. Prospects for systems biology and modeling of the gut microbiome. Trends Biotechnol. 29, 251–258 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Hastings, A. Transients: the key to long-term ecological understanding? Trends Ecol. Evol. 19, 39–45 (2004).

    Article  PubMed  Google Scholar 

  • DeJongh, M. et al. Toward the automated generation of genome-scale metabolic networks in the SEED. BMC Bioinformatics 8, I39 (2007).

    Article  CAS  Google Scholar 

  • Hanly, T. J. & Henson, M. A. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol. Bioeng. 108, 376–385 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Curtis, T. P., Head, I. M. & Graham, D. W. Theoretical ecology for engineering biology. Environ. Sci. Technol. 37, 64A–70A (2003).

    Article  PubMed  Google Scholar 

  • Dunham, M. J. Synthetic ecology: a model system for cooperation. Proc. Natl Acad. Sci. USA 104, 1741–1742 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balagaddé, F. K. et al. A synthetic Escherichia coli predator–prey ecosystem. Mol. Syst. Biol. 4, 187 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruder, W. C., Lu, T. & Collins, J. J. Synthetic biology moving into the clinic. Science 333, 1248–1252 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Werner, J. J. et al. Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc. Natl Acad. Sci. USA 22 Feb 2011 (doi:10.1073/pnas.1015676108).

  • Marsh, P. D. Are dental diseases examples of ecological catastrophes? Microbiology 149, 279–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Maloy, K. J. & Powrie, F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474, 298–306 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh, P. J., Bäckhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faith, J. J., McNulty, N. P., Rey, F. E. & Gordon, J. I. Predicting a human gut microbiota's response to diet in gnotobiotic mice. Science 333, 101–104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abbeele, P. V.d. et al. Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for bacteroidetes and clostridium cluster IX. Appl. Environ. Microbiol. 76, 5237–5246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diamond, J. M. in Ecology and Evolution of Communities (eds Cody, M. & Diamond, J. M.) 342–444 (Harvard Univ. Press, 1975).

    Google Scholar 

  • Connor, E. F. & Simberloff, D. The assembly of species communities: chance or competition? Ecology 60, 1132–1140 (1979).

    Article  Google Scholar 

  • Woodcock, S. et al. Neutral assembly of bacterial communities. FEMS Microbiol. Ecol. 62, 171–180 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Wootton, J. T. Field parameterization and experimental test of the neutral theory of biodiversity. Nature 433, 309–312 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Horner-Devine, M. C. et al. A comparison of taxon co-occurrence patterns for macro- and microorganisms. Ecology 88, 1345–1353 (2007).

    Article  PubMed  Google Scholar 

  • Sloan, W. T. et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 8, 732–740 (2006).

    Article  PubMed  Google Scholar 

  • Ricklefs, R. E. Community diversity: relative roles of local and regional processes. Science 235, 167–171 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Borgelt, C. & Kruse, R. in COMPSTAT 2002 — Proceedings in Computational Statistics: 15th Symposium held in Berlin, Germany, 2002 (eds Härdle, W. & Rönz, B.) 395–400 (Physica-Verlag, 2002).

    Google Scholar 

  • Lallich, S., Teytaud, O. & Prudhomme, E. Association Rule Interestingness: Measure and Statistical Validation (eds Guillet, F. & Hamilton J. H.) (Springer, 2007).

    Google Scholar 

  • Erdős, P. & Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960).

    Google Scholar 

  • Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    Article  PubMed  Google Scholar 

  • Jeong, H., Mason, S. P., Barabási, A.-L. & Oltvai, Z. N. Lethality and centrality in protein networks. Nature 411, 41–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  • van Dongen, S. Graph clustering via a discrete uncoupling process. SIAM J. Matrix Analysis Appl. 30, 121–141 (2008).

    Article  Google Scholar 

  • Clauset, A., Newman, M. E. & Moore, C. Finding community structure in very large networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 066111 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Watts, D. J. & Strogatz, S. H. Collective dynamics of 'small-world' networks. Nature 393, 440–442 (1998).

    Article  CAS  PubMed  Google Scholar