nature.com

A new perspective on lysogeny: prophages as active regulatory switches of bacteria - Nature Reviews Microbiology

  • ️Herskovits, Anat A.
  • ️Wed Sep 16 2015
  • Twort, F. W. An investigation on the nature of ultra-microscopic viruses. Lancet 186, 1241–1243 (1915).

    Google Scholar 

  • d'Herelle, F. An invisible microbe that is antagonistic to the dysentery Bacillus. Compt. Rend. Acad. Sci. Paris 165, 373–375 (1917).

    Google Scholar 

  • Pawluk, A., Bondy-Denomy, J., Cheung, V. H., Maxwell, K. L. & Davidson, A. R. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR–Cas system of Pseudomonas aeruginosa. mBio 5, e00896 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Bobay, L. M., Touchon, M. & Rocha, E. P. Pervasive domestication of defective prophages by bacteria. Proc. Natl Acad. Sci. USA 111, 12127–12132 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327 (2010).

    CAS  PubMed  Google Scholar 

  • Stern, A. & Sorek, R. The phage-host arms race: shaping the evolution of microbes. Bioessays 33, 43–51 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breitbart, M. & Rohwer, F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 13, 278–284 (2005).

    CAS  PubMed  Google Scholar 

  • Brussow, H. & Hendrix, R. W. Phage genomics: small is beautiful. Cell 108, 13–16 (2002).

    CAS  PubMed  Google Scholar 

  • Ptashne, M. A Genetic Switch 3rd edn (CSHL Press, 2004).

    Google Scholar 

  • Edlin, G., Lin, L. & Bitner, R. Reproductive fitness of P1, P2, and Mu lysogens of Escherichia coli. J. Virol. 21, 560–564 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravin, V. et al. Genomic sequence and analysis of the atypical temperate bacteriophage N15. J. Mol. Biol. 299, 53–73 (2000).

    CAS  PubMed  Google Scholar 

  • Little, J. in Regulation of Gene Expression in Escherichia coli (eds Lin, E. C. C. & Lynch, A. S.) 453–479 (Springer US, 1996).

    Google Scholar 

  • Lwoff, A. Lysogeny. Bacteriol. Rev. 17, 269–337 (1953).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nanda, A. M., Thormann, K. & Frunzke, J. Impact of spontaneous prophage induction on the fitness of bacterial populations and host–microbe interactions. J. Bacteriol. 197, 410–419 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Nash, H. A. Integration and excision of bacteriophage λ: the mechanism of conservation site specific recombination. Annu. Rev. Genet. 15, 143–167 (1981).

    CAS  PubMed  Google Scholar 

  • Shimada, K., Weisberg, R. A. & Gottesman, M. E. Prophage lambda at unusual chromosomal locations: I. Location of the secondary attachment sites and the properties of the lysogens. J. Mol. Biol. 63, 483–503 (1972).

    CAS  PubMed  Google Scholar 

  • Harshey, R. M. The Mu story: how a maverick phage moved the field forward. Mob. DNA 3, 21 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, R. V. & Ripp, S. A. in Horizontal Gene Transfer (eds Syvanen, M. & Kado, C. I.) 81–94 (Academic Press, 2001).

    Google Scholar 

  • Baess, I. Report on a pseudolysogenic mycobacterium and a review of the literature concerning pseudolysogeny. Acta Pathol. Microbiol. Scand. B Microbiol. Immunol. 79, 428–434 (1971).

    CAS  PubMed  Google Scholar 

  • Miller, R. & Day, M. in Bacteriophage Ecology (ed Abedon, S. T.) 114–144 (Cambridge Univ. Press, 2008).

    Google Scholar 

  • Fuhrman, J. A. Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548 (1999).

    CAS  PubMed  Google Scholar 

  • Suttle, C. A. & Chen, F. Mechanisms and rates of decay of marine viruses in seawater. Appl. Environ. Microbiol. 58, 3721–3729 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartley, M. A., Ronet, C. & Fasel, N. Backseat drivers: the hidden influence of microbial viruses on disease. Curr. Opin. Microbiol. 15, 538–545 (2012).

    PubMed  Google Scholar 

  • Wagner, P. L. & Waldor, M. K. Bacteriophage control of bacterial virulence. Infect. Immun. 70, 3985–3993 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brussow, H., Canchaya, C. & Hardt, W. D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68, 560–602 (2004).

    PubMed  PubMed Central  Google Scholar 

  • Casjens, S. Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol. 49, 277–300 (2003).

    CAS  PubMed  Google Scholar 

  • Frobisher, M. & Brown, J. Transmissible toxicogenicity of Streptococci. Bull. Johns Hopkins Hosp. 41, 167–173 (1927).

    Google Scholar 

  • Freeman, V. J. Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J. Bacteriol. 61, 675–688 (1951).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii, N., Oguma, K., Yokosawa, N., Kimura, K. & Tsuzuki, K. Characterization of bacteriophage nucleic acids obtained from Clostridium botulinum types C and D. Appl. Environ. Microbiol. 54, 69–73 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barksdale, L. & Arden, S. B. Persisting bacteriophage infections, lysogeny, and phage conversions. Annu. Rev. Microbiol. 28, 265–299 (1974).

    CAS  PubMed  Google Scholar 

  • Plunkett, G. 3rd, Rose, D. J., Durfee, T. J. & Blattner, F. R. Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J. Bacteriol. 181, 1767–1778 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waldor, M. K. & Mekalanos, J. J. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272, 1910–1914 (1996).

    CAS  PubMed  Google Scholar 

  • Faruque, S. M., Albert, M. J. & Mekalanos, J. J. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol. Mol. Biol. Rev. 62, 1301–1314 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mirold, S. et al. Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. Proc. Natl Acad. Sci. USA 96, 9845–9850 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman, D. C. et al. Staphylococcus aureus bacteriophages mediating the simultaneous lysogenic conversion of β-lysin, staphylokinase and enterotoxin A: molecular mechanism of triple conversion. J. Gen. Microbiol. 135, 1679–1697 (1989).

    CAS  PubMed  Google Scholar 

  • Muhldorfer, I. et al. Regulation of the Shiga-like toxin II operon in Escherichia coli. Infect. Immun. 64, 495–502 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner, P. L. et al. Role for a phage promoter in Shiga toxin 2 expression from a pathogenic Escherichia coli strain. J. Bacteriol. 183, 2081–2085 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livny, J. & Friedman, D. I. Characterizing spontaneous induction of Stx encoding phages using a selectable reporter system. Mol. Microbiol. 51, 1691–1704 (2004).

    CAS  PubMed  Google Scholar 

  • Reidl, J. & Klose, K. E. Vibrio cholerae and cholera: out of the water and into the host. FEMS Microbiol. Rev. 26, 125–139 (2002).

    CAS  PubMed  Google Scholar 

  • de Kievit, T. R. & Iglewski, B. H. Bacterial quorum sensing in pathogenic relationships. Infect. Immun. 68, 4839–4849 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunny, G. M. & Leonard, B. A. Cell–cell communication in Gram-positive bacteria. Annu. Rev. Microbiol. 51, 527–564 (1997).

    CAS  PubMed  Google Scholar 

  • Waldor, M. K. & Friedman, D. I. Phage regulatory circuits and virulence gene expression. Curr. Opin. Microbiol. 8, 459–465 (2005).

    CAS  PubMed  Google Scholar 

  • Casas, V. & Maloy, S. Role of bacteriophage-encoded exotoxins in the evolution of bacterial pathogens. Future Microbiol. 6, 1461–1473 (2011).

    CAS  PubMed  Google Scholar 

  • McShan, W. M., Tang, Y. F. & Ferretti, J. J. Bacteriophage T12 of Streptococcus pyogenes integrates into the gene encoding a serine tRNA. Mol. Microbiol. 23, 719–728 (1997).

    CAS  PubMed  Google Scholar 

  • Williams, K. P. Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucleic Acids Res. 30, 866–875 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubnau, D. DNA uptake in bacteria. Annu. Rev. Microbiol. 53, 217–244 (1999).

    CAS  PubMed  Google Scholar 

  • Grossman, A. D. Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu. Rev. Genet. 29, 477–508 (1995).

    CAS  PubMed  Google Scholar 

  • Claverys, J. P., Prudhomme, M. & Martin, B. Induction of competence regulons as a general response to stress in Gram-positive bacteria. Annu. Rev. Microbiol. 60, 451–475 (2006).

    CAS  PubMed  Google Scholar 

  • Borezee, E., Msadek, T., Durant, L. & Berche, P. Identification in Listeria monocytogenes of MecA, a homologue of the Bacillus subtilis competence regulatory protein. J. Bacteriol. 182, 5931–5934 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loessner, M. J., Inman, R. B., Lauer, P. & Calendar, R. Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Mol. Microbiol. 35, 324–340 (2000).

    CAS  PubMed  Google Scholar 

  • Klumpp, J. & Loessner, M. J. Listeria phages: genomes, evolution, and application. Bacteriophage 3, e26861 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Zink, R. & Loessner, M. J. Classification of virulent and temperate bacteriophages of Listeria spp. on the basis of morphology and protein analysis. Appl. Environ. Microbiol. 58, 296–302 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loessner, M. J., Wendlinger, G. & Scherer, S. Heterogeneous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes. Mol. Microbiol. 16, 1231–1241 (1995).

    CAS  PubMed  Google Scholar 

  • Rabinovich, L., Sigal, N., Borovok, I., Nir-Paz, R. & Herskovits, A. A. Prophage excision activates Listeria competence genes that promote phagosomal escape and virulence. Cell 150, 792–802 (2012).

    CAS  PubMed  Google Scholar 

  • Hamon, M., Bierne, H. & Cossart, P. Listeria monocytogenes: a multifaceted model. Nat. Rev. Microbiol. 4, 423–434 (2006).

    CAS  PubMed  Google Scholar 

  • Rosenberg, S. M. Evolving responsively: adaptive mutation. Nat. Rev. Genet. 2, 504–515 (2001).

    CAS  PubMed  Google Scholar 

  • LeClerc, J. E., Li, B., Payne, W. L. & Cebula, T. A. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274, 1208–1211 (1996).

    CAS  PubMed  Google Scholar 

  • Jolivet-Gougeon, A. et al. Bacterial hypermutation: clinical implications. J. Med. Microbiol. 60, 563–573 (2011).

    CAS  PubMed  Google Scholar 

  • Scott, J., Nguyen, S. V., King, C. J., Hendrickson, C. & McShan, W. M. Phage-like Streptococcus pyogenes chromosomal islands (SpyCI) and mutator phenotypes: control by growth state and rescue by a SpyCI-encoded promoter. Front. Microbiol. 3, 317 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Novick, R. P., Christie, G. E. & Penades, J. R. The phage-related chromosomal islands of Gram-positive bacteria. Nat. Rev. Microbiol. 8, 541–551 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scott, J., Thompson-Mayberry, P., Lahmamsi, S., King, C. J. & McShan, W. M. Phage-associated mutator phenotype in group A Streptococcus. J. Bacteriol. 190, 6290–6301 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Canchaya, C. et al. Genome analysis of an inducible prophage and prophage remnants integrated in the Streptococcus pyogenes strain SF370. Virology 302, 245–258 (2002).

    CAS  PubMed  Google Scholar 

  • Nguyen, S. V. & McShan, W. M. Chromosomal islands of Streptococcus pyogenes and related streptococci: molecular switches for survival and virulence. Front. Cell. Infect. Microbiol. 4, 109 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Kimura, T., Amaya, Y., Kobayashi, K., Ogasawara, N. & Sato, T. Repression of sigK intervening (skin) element gene expression by the CI-like protein SknR and effect of SknR depletion on growth of Bacillus subtilis cells. J. Bacteriol. 192, 6209–6216 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stragier, P., Kunkel, B., Kroos, L. & Losick, R. Chromosomal rearrangement generating a composite gene for a developmental transcription factor. Science 243, 507–512 (1989).

    CAS  PubMed  Google Scholar 

  • Kunkel, B., Losick, R. & Stragier, P. The Bacillus subtilis gene for the development transcription factor sigma K is generated by excision of a dispensable DNA element containing a sporulation recombinase gene. Genes Dev. 4, 525–535 (1990).

    CAS  PubMed  Google Scholar 

  • Takemaru, K., Mizuno, M., Sato, T., Takeuchi, M. & Kobayashi, Y. Complete nucleotide sequence of a skin element excised by DNA rearrangement during sporulation in Bacillus subtilis. Microbiology 141, 323–327 (1995).

    CAS  PubMed  Google Scholar 

  • Sato, T. & Kobayashi, Y. The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite. J. Bacteriol. 180, 1655–1661 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silvaggi, J. M., Perkins, J. B. & Losick, R. Small untranslated RNA antitoxin in Bacillus subtilis. J. Bacteriol. 187, 6641–6650 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi, Y., Park, J. H. & Inouye, M. Toxin-antitoxin systems in bacteria and archaea. Annu. Rev. Genet. 45, 61–79 (2011).

    CAS  PubMed  Google Scholar 

  • Hayes, F. & Kedzierska, B. Regulating toxin-antitoxin expression: controlled detonation of intracellular molecular timebombs. Toxins (Basel) 6, 337–358 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eichenberger, P. et al. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol. 2, e328 (2004).

    PubMed  PubMed Central  Google Scholar 

  • Errington, J. Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol. Rev. 57, 1–33 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato, T., Harada, K. & Kobayashi, Y. Analysis of suppressor mutations of spoIVCA mutations: occurrence of DNA rearrangement in the absence of site-specific DNA recombinase SpoIVCA in Bacillus subtilis. J. Bacteriol. 178, 3380–3383 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, K. P. et al. Inducible Clostridium perfringens bacteriophages ΦS9 and ΦS63: different genome structures and a fully functional sigK intervening element. Bacteriophage 2, 89–97 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Abe, K. et al. Regulated DNA rearrangement during sporulation in Bacillus weihenstephanensis KBAB4. Mol. Microbiol. 90, 415–427 (2013).

    CAS  PubMed  Google Scholar 

  • Abe, K. et al. Developmentally-regulated excision of the SPβ prophage reconstitutes a gene required for spore envelope maturation in Bacillus subtilis. PLoS Genet. 10, e1004636 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Kumar, K., Mella-Herrera, R. A. & Golden, J. W. Cyanobacterial heterocysts. Cold Spring Harb. Perspect. Biol. 2, a000315 (2010).

    PubMed  PubMed Central  Google Scholar 

  • Carrasco, C. D., Holliday, S. D., Hansel, A., Lindblad, P. & Golden, J. W. Heterocyst-specific excision of the Anabaena sp. strain PCC 7120 hupL element requires xisC. J. Bacteriol. 187, 6031–6038 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henson, B. J., Hartman, L., Watson, L. E. & Barnum, S. R. Evolution and variation of the nifD and hupL elements in the heterocystous cyanobacteria. Int. J. Syst. Evol. Microbiol. 61, 2938–2949 (2011).

    CAS  PubMed  Google Scholar 

  • Golden, J. W., Robinson, S. J. & Haselkorn, R. Rearrangement of nitrogen fixation genes during heterocyst differentiation in the cyanobacterium Anabaena. Nature 314, 419–423 (1985).

    CAS  PubMed  Google Scholar 

  • Carrasco, C. D., Buettner, J. A. & Golden, J. W. Programmed DNA rearrangement of a cyanobacterial hupL gene in heterocysts. Proc. Natl Acad. Sci. USA 92, 791–795 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thanassi, J. A., Hartman-Neumann, S. L., Dougherty, T. J., Dougherty, B. A. & Pucci, M. J. Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res. 30, 3152–3162 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart, F. M. & Levin, B. R. The population biology of bacterial viruses: why be temperate. Theor. Popul. Biol. 26, 93–117 (1984).

    CAS  PubMed  Google Scholar 

  • Campbell, A. Conditions for the existence of bacteriophage. Evolution 15, 153–165 (1961).

    Google Scholar 

  • Edlin, G., Lin, L. & Kudrna, R. λ lysogens of E. coli reproduce more rapidly than non-lysogens. Nature 255, 735–737 (1975).

    CAS  PubMed  Google Scholar 

  • Lin, L., Bitner, R. & Edlin, G. Increased reproductive fitness of Escherichia coli lambda lysogens. J. Virol. 21, 554–559 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herron-Olson, L., Fitzgerald, J. R., Musser, J. M. & Kapur, V. Molecular correlates of host specialization in Staphylococcus aureus. PLoS ONE 2, e1120 (2007).

    PubMed  PubMed Central  Google Scholar 

  • Lowder, B. V. et al. Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus. Proc. Natl Acad. Sci. USA 106, 19545–19550 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goerke, C., Wirtz, C., Fluckiger, U. & Wolz, C. Extensive phage dynamics in Staphylococcus aureus contributes to adaptation to the human host during infection. Mol. Microbiol. 61, 1673–1685 (2006).

    CAS  PubMed  Google Scholar 

  • Utter, B. et al. Beyond the chromosome: the prevalence of unique extra-chromosomal bacteriophages with integrated virulence genes in pathogenic Staphylococcus aureus. PLoS ONE 9, e100502 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Salgado-Pabon, W. et al. Staphylococcus aureus β-toxin production is common in strains with the β-toxin gene inactivated by bacteriophage. J. Infect. Dis. 210, 784–792 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bae, T., Baba, T., Hiramatsu, K. & Schneewind, O. Prophages of Staphylococcus aureus Newman and their contribution to virulence. Mol. Microbiol. 62, 1035–1047 (2006).

    CAS  PubMed  Google Scholar 

  • Luneberg, E. et al. Phase-variable expression of lipopolysaccharide contributes to the virulence of Legionella pneumophila. J. Exp. Med. 188, 49–60 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luneberg, E. et al. Chromosomal insertion and excision of a 30 kb unstable genetic element is responsible for phase variation of lipopolysaccharide and other virulence determinants in Legionella pneumophila. Mol. Microbiol. 39, 1259–1271 (2001).

    CAS  PubMed  Google Scholar 

  • Mah, T. F. & O'Toole, G. A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9, 34–39 (2001).

    CAS  PubMed  Google Scholar 

  • O'Toole, G. A. & Kolter, R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30, 295–304 (1998).

    CAS  PubMed  Google Scholar 

  • Kirby, J. E., Trempy, J. E. & Gottesman, S. Excision of a P4-like cryptic prophage leads to Alp protease expression in Escherichia coli. J. Bacteriol. 176, 2068–2081 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Kim, Y. & Wood, T. K. Control and benefits of CP4-57 prophage excision in Escherichia coli biofilms. ISME J. 3, 1164–1179 (2009).

    CAS  PubMed  Google Scholar