Thalamocortical development: how are we going to get there? - Nature Reviews Neuroscience
- ️Molnár, Zoltán
- ️Tue Apr 01 2003
Rubenstein, J. L., Rakic, P. Special issue: genetic control of cortical development. Cereb. Cortex 9, 521–901 (1999).
O'Leary, D. D., Schlaggar, B. L. & Tuttle, R. Specification of neocortical areas and thalamocortical connections. Annu. Rev. Neurosci. 17, 419–439 (1994).
O'Leary, D. D. & Nakagawa, Y. Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex. Curr. Opin. Neurobiol. 12, 14–25 (2002). A comprehensive review on the early gene expression patterns and cortical regionalization.
Jones, E. G. The Thalamus (Plenum, New York, 1985).
Northcutt, R. G. & Kaas, J. H. The emergence and evolution of mammalian neocortex. Trends Neurosci. 9, 373–379 (1995).
Krubitzer, L. & Huffman, K. J. Arealization of the neocortex in mammals: genetic and epigenetic contributions to the phenotype. Brain Behav. Evol. 55, 322–335 (2000).
Bayer, S. A. & Altman, J. Neocortical Development (Raven, New York, 1991).
Allendoerfer, K. L. & Shatz, C. J. The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu. Rev. Neurosci. 17, 185–218 (1994).
Molnár, Z. Development and evolution of thalamocortical interactions. Eur. J. Morphol. 38, 313–320 (2000).
McConnell, S. K., Ghosh, A. & Shatz, C. J. Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science 245, 978–982 (1989). The first detailed description of the pioneering projections from subplate to the internal capsule.
Altman, J. & Bayer, S. A. Development of the diencephalon in the rat. V. Thymidine-radiographic observations on internuclear and intranuclear gradients in the thalamus. J. Comp. Neurol. 188, 473–499 (1979).
Lund, R. D. & Mustari, M. J. Development of the geniculocortical pathway in rats. J. Comp. Neurol. 173, 289–306 (1977).
Mitrofanis, J. & Guillery, R. W. New views of the thalamic reticular nucleus in the adult and the developing brain. Trends Neurosci. 16, 240–245 (1993).
Molnár, Z. & Blakemore, C. How do thalamic axons find their way to the cortex? Trends Neurosci. 18, 389–397 (1995).
Puelles, L. & Rubenstein, J. L. Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci. 16, 472–479 (1993).
Nakagawa, Y. & O'Leary, D. D. Combinatorial expression patterns of LIM-homeodomain and other regulatory genes parcellate developing thalamus. J. Neurosci. 21, 2711–2725 (2001).
Puelles, L. et al. Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2. 1, Pax-6, and Tbr-1. J. Comp. Neurol. 424, 409–438 (2000).
Stoykova, A. & Gruss, P. Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J. Neurosci. 14, 1395–1412 (1994).
Molnár, Z. & Butler, A. B. The corticostriatal junction: a crucial region for forebrain development and evolution. Bioessays 24, 530–541 (2002).
Molnár, Z., Adams, R. & Blakemore, C. Mechanisms underlying the early establishment of thalamocortical connections in the rat. J. Neurosci. 18, 5723–5745 (1998).
Métin, C. & Godement, P. The ganglionic eminence may be an intermediate target for corticofugal and thalamocortical axons. J. Neurosci. 16, 3219–3235 (1996). The first description of the guidepost cells situated in the internal capsule with early dorsal thalamic projections.
Molnár, Z. & Cordery, P. Connections between cells of the internal capsule, thalamus, and cerebral cortex in embryonic rat. J. Comp. Neurol. 413, 1–25 (1999).
Donoghue, M. J. & Rakic, P. Molecular evidence for the early specification of presumptive functional domains in the embryonic primate cerebral cortex. J. Neurosci. 19, 5967–5979 (1999).
Barbe, M. F. & Levitt, P. Attraction of specific thalamic input by cerebral grafts depends on the molecular identity of the implant. Proc. Natl Acad. Sci. USA 89, 3706–3710 (1992).
Suzuki, S. C., Inoue, T., Kimura, Y., Tanaka, T. & Takeichi, M. Neuronal circuits are subdivided by differential expression of type-II classic cadherins in postnatal mouse brains. Mol. Cell. Neurosci. 9, 433–447 (1997).
Gao, P. P. et al. Regulation of thalamic neurite outgrowth by the Eph ligand ephrin-A5: implications in the development of thalamocortical projections. Proc. Natl Acad. Sci. USA 95, 5329–5334 (1998).
Ma, L. et al. Neurotrophin-3 is required for appropriate establishment of thalamocortical connections. Neuron 36. 623–634 (2002).
McQuillen, P. S., DeFreitas, M. F., Zada, G. & Shatz, C. J. A novel role for p75NTR in subplate growth cone complexity and visual thalamocortical innervation. J. Neurosci. 22, 3580–3593 (2002).
Serafini, T. et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87, 1001–1014 (1996).
Métin, C., Deleglise, D., Serafini, T., Kennedy, T. E. & Tessier-Lavigne, M. A role for netrin-1 in the guidance of cortical efferents. Development 124, 5063–5074 (1997). The first study indicating the role of netrin 1 in the development of early cortical connectivity.
Braisted, J. E., Tuttle, R. & O'Leary, D. D. Thalamocortical axons are influenced by chemorepellent and chemoattractant activities localized to decision points along their path. Dev. Biol. 208, 430–440 (1999).
Braisted, J. E. et al. Netrin-1 promotes thalamic axon growth and is required for proper development of the thalamocortical projection. J. Neurosci. 20, 5792–5801 (2000).
Bagri, A. et al. Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron 33, 233–248 (2002).
Vanderhaeghen, P. et al. A mapping label required for normal scale of body representation in the cortex. Nature Neurosci. 3, 358–365 (2000).
Mackarehtschian, K., Lau, C. K., Caras, I. & McConnell, S. K. Regional differences in the developing cerebral cortex revealed by Ephrin-A5 expression. Cereb. Cortex 9, 601–610 (1999).
Mann, F., Peuckert, C., Dehner, F., Zhou, R. & Bolz, J. Ephrins regulate the formation of terminal axonal arbors during the development of thalamocortical projections. Development 129, 3945–3955 (2002).
Uziel, D. et al. Miswiring of limbic thalamocortical projections in the absence of ephrin-A5. J. Neurosci. 22, 9352–9357 (2002).
Takemoto, M. et al. Ephrin-B3-EphA4 interactions regulate the growth of specific thalamocortical axon populations in vitro. Eur. J. Neurosci. 16, 1168–1172 (2002).
Matthes, D. J., Sink, H., Kolodkin, A. L. & Goodman, C. S. Semaphorin II can function as a selective inhibitor of specific synaptic arborizations. Cell 81, 631–639 (1995).
Raper, J. A. Semaphorins and their receptors in vertebrates and invertebrates. Curr. Opin. Neurobiol. 10, 88–94 (2000).
Skaliora, I., Singer, W., Betz, H. & Puschel, A. W. Differential patterns of semaphorin expression in the developing rat brain. Eur. J. Neurosci. 10, 1215–1229 (1998).
Messersmith, E. K. et al. Semaphorin III can function as a selective chemorepellent to pattern sensory projections in the spinal cord. Neuron 14, 949–959 (1995).
Bagnard, D., Lohrum, M., Uziel, D., Puschel, A. W. & Bolz, J. Semaphorins act as attractive and repulsive guidance signals during the development of cortical projections. Development 125, 5043–5053 (1998).
Bagnard, D., Chounlamountri, N., Puschel, A. W. & Bolz, J. Axonal surface molecules act in combination with semaphorin 3a during the establishment of corticothalamic projections. Cereb. Cortex 11, 278–285 (2001).
Leighton, P. A. et al. Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature 410, 174–179 (2001).
Garel, S., Yun, K., Grosschedl, R. & Rubenstein, J. L. The early topography of thalamocortical projections is shifted in Ebf1 and Dlx1/2 mutant mice. Development 129, 5621–5634 (2002). This study supports the idea that early thalamic targeting in the cortex depends on signals within the ventral telencephalon and that it might be independent from early cortical gene expression.
Crossley, P. H. & Martin, G. R. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121, 439–451 (1995).
Grove, E. A., Tole, S., Limon, J., Yip, L. & Ragsdale, C. W. The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125, 2315–2325 (1998).
Rubenstein, J. L. & Beachy, P. A. Patterning of the embryonic forebrain. Curr. Opin. Neurobiol. 8, 18–26 (1998).
Nakagawa, Y., Johnson, J. E. & O'Leary, D. D. Graded and areal expression patterns of regulatory genes and cadherins in embryonic neocortex independent of thalamocortical input. J. Neurosci. 19, 10877–10885 (1999).
Miyashita-Lin, E. M., Hevner, R., Wassarman, K. M., Martinez, S. & Rubenstein, J. L. Early neocortical regionalization in the absence of thalamic innervation. Science 285, 906–909 (1999). References 50 and 51 provided the first evidence indicating that the early cortical gene expression pattern is independent of embryonic thalamic input.
Donoghue, M. J. & Rakic, P. Molecular gradients and compartments in the embryonic primate cerebral cortex. Cereb. Cortex 9, 586–600 (1999).
Tuttle, R., Nakagawa, Y., Johnson, J. E. & O'Leary, D. D. Defects in thalamocortical axon pathfinding correlate with altered cell domains in Mash-1-deficient mice. Development 126, 1903–1916 (1999). This study provides strong support for the early guiding role of the internal capsule cells and their projections in the early development of thalamic projections.
Hevner, R. F., Miyashita-Lin, E. & Rubenstein, J. L. Cortical and thalamic axon pathfinding defects in Tbr1, Gbx2, and Pax6 mutant mice: evidence that cortical and thalamic axons interact and guide each other. J. Comp. Neurol. 447, 8–17 (2002). The experiments of this study indicate that an interaction between early corticofugal and thalamocortical projections is necessary for the correct development of both sets of fibres.
Stoykova, A., Fritsch, R., Walther, C. & Gruss, P. Forebrain patterning defects in Small eye mutant mice. Development 122, 3453–3465 (1996).
Jones, L., López-Bendito, G., Gruss, P., Stoykova, A. & Molnar, Z. Pax6 is required for the normal development of the forebrain axonal connections. Development 129, 5041–5052 (2002).
Bishop, K. M., Goudreau, G. & O'Leary, D. D. Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288, 344–349 (2000).
Mallamaci, A., Muzio, L., Chan, C. H., Parnavelas, J. & Boncinelli, E. Area identity shifts in the early cerebral cortex of Emx2−/− mutant mice. Nature Neurosci. 3, 679–686 (2000).
López-Bendito, G., Chan, C. H., Mallamaci, A., Parnavelas, J. & Molnár, Z. Role of Emx2 in the development of the reciprocal connectivity between cortex and thalamus. J. Comp. Neurol. 451, 153–169 (2002).
Pratt, T. et al. A role for Pax6 in the normal development of dorsal thalamus and its cortical connections. Development 127, 5167–5178 (2000). Using an elegant co-culture essay, this study provides evidence that thalamic cells are directly influenced by the lack of Pax6 , which might contribute to the pathfinding defects of early thalamocortical axons.
Molnár, Z. Development of Thalamocortical Connections (Springer, Heidelberg, 1998).
McConnell, S. K., Ghosh, A. & Shatz, C. J. Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science 245, 978–982 (1989).
De Carlos, J. A. & O'Leary, D. D. Growth and targeting of subplate axons and establishment of major cortical pathways. J. Neurosci. 12, 1194–1211 (1992).
Mitrofanis, J. & Baker, G. E. Development of the thalamic reticular and perireticular nuclei in rats and their relationship to the course of growing corticofugal and corticopetal axons. J. Comp. Neurol. 338, 575–587 (1993).
Letinic, K. & Kostovic, I. Transient neuronal population of the internal capsule in the developing human cerebrum. Neuroreport 7, 2159–2162 (1996).
Zhou, C. et al. The nuclear orphan receptor COUP-TFI is required for differentiation of subplate neurons and guidance of thalamocortical axons. Neuron 24, 847–859 (1999). This study describes the premature death of subplate neurons in Coup-tfi -deficient mice, which leads to a reduction in thalamic axons growth through the internal capsule.
Marín, O., Baker, J., Puelles, L. & Rubenstein, J. L. Patterning of the basal telencephalon and hypothalamus is essential for guidance of cortical projections. Development 129, 761–773 (2002).
Rakic, P. Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 261, 467–471 (1976).
Shatz, C. J. & Luskin, M. B. The relationship between the geniculocortical afferents and their cortical target cells during development of the cat's primary visual cortex. J. Neurosci. 6, 3655–3668 (1986).
Molnar, Z., Higashi, S., Adams, R. & Toyama, K. in Plasticity of Adult Barrel Cortex (ed. Kossut, M.) 47–79 (Graham Publishing, Johnson City, Tennessee, 2000).
Krug, K., Smith, A. L. & Thompson, I. D. The development of topography in the hamster geniculo-cortical projection. J. Neurosci. 18, 5766–5776 (1998).
Catalano, S. M. & Shatz, C. J. Activity-dependent cortical target selection by thalamic axons. Science 281, 559–562 (1998). This study shows that blocking action potentials during early stages of development in the occipital cortex disrupts the entry and areal targeting of thalamic projections.
Naegele, J. R., Jhaveri, S. & Schneider, G. E. Sharpening of topographical projections and maturation of geniculocortical axon arbors in the hamster. J. Comp. Neurol. 277, 593–607 (1988).
Ghosh, A. & Shatz, C. J. Involvement of subplate neurons in the formation of ocular dominance columns. Science 255, 1441–1443 (1992).
Catalano, S. M., Robertson, R. T. & Killackey, H. P. Individual axon morphology and thalamocortical topography in developing rat somatosensory cortex. J. Comp. Neurol. 367, 36–53 (1996).
Friauf, E. & Shatz, C. J. Changing patterns of synaptic input to subplate and cortical plate during development of visual cortex. J. Neurophysiol. 66, 2059–2071 (1991).
Higashi, S., Molnár, Z., Kurotani, T. & Toyama, K. Prenatal development of neural excitation in rat thalamocortical projections studied by optical recording. Neuroscience 115, 1231–1246 (2002). Demonstrates the spatial and temporal distribution of cortical activation after direct thalamic stimulation in thalamocortical slices using optical recording of voltage-sensitive dyes.
Yamamoto, N., Kurotani, T. & Toyama, K. Neural connections between the lateral geniculate nucleus and visual cortex in vitro. Science 245, 192–194 (1989).
Yamamoto, N., Yamada, K., Kurotani, T. & Toyama, K. Laminar specificity of extrinsic cortical connections studied in coculture preparations. Neuron 9, 217–228 (1992).
Molnár, Z. & Blakemore, C. Lack of regional specificity for connections formed between thalamus and cortex in coculture. Nature 351, 475–477 (1991).
Bolz, J., Novak, N. & Staiger, V. Formation of specific afferent connections in organotypic slice cultures from rat visual cortex cocultured with lateral geniculate nucleus. J. Neurosci. 12, 3054–3070 (1992).
Yamamoto, N., Higashi, S. & Toyama, K. Stop and branch behaviors of geniculocortical axons: a time-lapse study in organotypic cocultures. J. Neurosci. 17, 3653–3663 (1997).
Yamamoto, N. et al. Characterization of factors regulating lamina-specific growth of thalamocortical axons. J. Neurobiol. 42, 56–68 (2000).
Yamamoto, N. Cellular and molecular basis for the formation of lamina-specific thalamocortical projections. Neurosci. Res. 42, 167–173 (2002).
Redies, C. & Takeichi, M. Expression of N-cadherin mRNA during development of the mouse brain. Dev. Dyn. 197, 26–39 (1993).
Polleux, F., Giger, R. J., Ginty, D. D., Kolodkin, A. L. & Ghosh, A. Patterning of cortical efferent projections by semaphorin-neuropilin interactions. Science 282, 1904–1906 (1998).
Oohira, A., Katoh-Semba, R., Watanabe, E. & Matsui, F. Brain development and multiple molecular species of proteoglycan. Neurosci. Res. 20, 195–207 (1994).
Watanabe, E. et al. A membrane-bound heparan sulfate proteoglycan that is transiently expressed on growing axons in the rat brain. J. Neurosci. Res. 44, 84–96 (1996).
Szebenyi, G. et al. Fibroblast growth factor-2 promotes axon branching of cortical neurons by influencing morphology and behavior of the primary growth cone. J. Neurosci. 21, 3932–3941 (2001).
Wang, K. H. et al. Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell 96, 771–784 (1999).
Ozdinler, P. H. & Erzurumlu, R. S. Slit2, a branching-arborization factor for sensory axons in the Mammalian CNS. J. Neurosci. 22, 4540–4549 (2002).
Rakic, P. Specification of cerebral cortical areas. Science 241, 170–176 (1988).
Rubenstein, J. L. et al. Genetic control of cortical regionalization and connectivity. Cereb. Cortex 9, 524–532 (1999).
Cohen-Tannoudji, M., Babinet, C. & Wassef, M. Early determination of a mouse somatosensory cortex marker. Nature 368, 460–463 (1994).
Levitt, P., Eagleson, K. L., Chan, A. V., Ferri, R. T. & Lillien, L. Signaling pathways that regulate specification of neurons in developing cerebral cortex. Dev. Neurosci. 19, 6–8 (1997).
Nothias, F., Fishell, G. & Ruiz i Altaba, A. Cooperation of intrinsic and extrinsic signals in the elaboration of regional identity in the posterior cerebral cortex. Curr. Biol. 8, 459–462 (1998).
Gitton, Y., Cohen-Tannoudji, M. & Wassef, M. Specification of somatosensory area identity in cortical explants. J. Neurosci. 19, 4889–4898 (1999).
Bulfone, A. et al. T-brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron 15, 63–78 (1995).
Walther, C. & Gruss, P. Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113, 1435–1449 (1991).
Gulisano, M., Broccoli, V., Pardini, C. & Boncinelli, E. Emx1 and Emx2 show different patterns of expression during proliferation and differentiation of the developing cerebral cortex in the mouse. Eur. J. Neurosci. 8, 1037–1050 (1996).
Mallamaci, A. et al. EMX2 protein in the developing mouse brain and olfactory area. Mech. Dev. 77, 165–172 (1998).
Arimatsu, Y. et al. Early regional specification for a molecular neuronal phenotype in the rat neocortex. Proc. Natl Acad. Sci. USA 89, 8879–8883 (1992).
Liu, Q., Dwyer, N. D. & O'Leary, D. D. Differential expression of COUP-TFI, CHL1, and two novel genes in developing neocortex identified by differential display PCR. J. Neurosci. 20, 7682–7690 (2000).
Pallas, S. L. Intrinsic and extrinsic factors that shape neocortical specification. Trends Neurosci. 24, 417–423 (2001).
Kaas, J. H., Florence, S. L. & Jain, N. Subcortical contributions to massive cortical reorganizations. Neuron 22:657–660 (1999).
Rakic, P., Suner, I. & Williams, R. W. A novel cytoarchitectonic area induced experimentally within the primate visual cortex. Proc. Natl Acad. Sci. USA 88, 2083–2087 (1991).
Dehay, C., Giroud, P., Berland, M., Killackey, H. & Kennedy, H. Contribution of thalamic input to the specification of cytoarchitectonic cortical fields in the primate: effects of bilateral enucleation in the fetal monkey on the boundaries, dimensions, and gyrification of striate and extrastriate cortex. J. Comp. Neurol. 367, 70–89 (1996). An interesting study that indicates a direct link between thalamic input and cortical neural proliferation.
Kahn, D. M. & Krubitzer, L. Massive cross-modal cortical plasticity and the emergence of a new cortical area in developmentally blind mammals. Proc. Natl Acad. Sci. USA 99, 11429–11434 (2002).
Windrem, M. S. & Finlay, B. L. Thalamic ablations and neocortical development: alterations of cortical cytoarchitecture and cell number. Cereb. Cortex 1, 230–240 (1991).
Gaillard, A. & Roger, M. Early commitment of embryonic neocortical cells to develop area-specific thalamic connections. Cereb. Cortex 10, 443–453 (2000).
Dehay, C., Savatier, P., Cortay, V. & Kennedy, H. Cell-cycle kinetics of neocortical precursors are influenced by embryonic thalamic axons. J. Neurosci. 21, 201–214 (2001).
Edgar, J. M. & Price, D. J. Radial migration in the cerebral cortex is enhanced by signals from thalamus. Eur. J. Neurosci. 13, 1745–1754 (2001). This study demonstrates that thalamic input stimulates cortical neural migration.
Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).
Woolsey, T. A. & Van der Loos, H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17, 205–242 (1970).
O'Leary, D. D., Ruff, N. L. & Dyck, R. H. Development, critical period plasticity, and adult reorganizations of mammalian somatosensory systems. Curr. Opin. Neurobiol. 4, 535–544 (1994).
Agmon, A., Yang, L. T., Jones, E. G. & O'Dowd, D. K. Topological precision in the thalamic projection to neonatal mouse barrel cortex. J. Neurosci. 15, 549–561 (1995).
Fukuchi-Shimogori, T. & Grove, E. A. Neocortex patterning by the secreted signaling molecule FGF8. Science 294, 1071–1074 (2001).
Erzurumlu, R. S. & Kind, P. C. Neural activity: sculptor of 'barrels' in the neocortex. Trends Neurosci. 24, 589–595 (2001). A nice review on the pre- and post-synaptic elements involved in thalamocortical patterning and cytoarchitectonic differentiation in the barrel cortex in the rodent primary somatosensory cortex.
Molnár, Z. & Hannan, A. J. Development of thalamocortical projections in normal and mutant mice. Results Probl. Cell Differ. 30, 293–332 (2000).
Rebsam, A., Seif, I. & Gaspar, P. Refinement of thalamocortical arbors and emergence of barrel domains in the primary somatosensory cortex: a study of normal and monoamine oxidase a knock-out mice. J. Neurosci. 22, 8541–8552 (2002).
Cases, O. et al. Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16, 297–307 (1996).
Vitalis, T. et al. Effects of monoamine oxidase A inhibition on barrel formation in the mouse somatosensory cortex: determination of a sensitive developmental period. J. Comp. Neurol. 393, 169–184 (1998).
Salichon, N. et al. Excessive activation of serotonin (5-HT) 1B receptors disrupts the formation of sensory maps in monoamine oxidase a and 5-ht transporter knock-out mice. J. Neurosci. 21, 884–896 (2001).
Bortolotto, Z. A., Fitzjohn, S. M. & Collingridge, G. L. Roles of metabotropic glutamate receptors in LTP and LTD in the hippocampus. Curr. Opin. Neurobiol. 9, 299–304 (1999).
Hannan, A. J. et al. PLC-β1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nature Neurosci. 4, 282–288 (2001). Together with reference 126, this is the first description of a separate alteration in the periphery-related patterning of thalamic projections from the cytoarchitectonic differentiation of barrels in the absence of Plcβ1 and mGluRs.
Iwasato, T. et al. Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 406, 726–731 (2000).
Datwani, A., Iwasato, T., Itohara, S. & Erzurumlu, R. S. NMDA receptor-dependent pattern transfer from afferents to postsynaptic cells and dendritic differentiation in the Barrel cortex. Mol. Cell. Neurosci. 21, 477–492 (2002).
Caviness, V. S. Jr, Crandall, J. E. & Edwards, M. A. in Cerebral Cortex Vol. 7 (eds Jones, E. G. & Peters, A.) 59–89 (Plenum, New York, 1998).
Caviness, V. S. Jr. Development of neocortical afferent systems: studies in the reeler mouse. Neurosci. Res. Program Bull. 20, 560–569 (1982).
Molnár, Z. & Blakemore, C. in Development of the Cerebral Cortex Symposium 193 (eds Bock, G. & Cardew, G.) 127–149 (Wiley, Chichester, UK, 1995).
O'Brien, T. F., Steindler, D. A. & Cooper, N. G. Abnormal glial and glycoconjugate dispositions in the somatosensory cortical barrel field of the early postnatal reeler mutant mouse. Brain Res. 429, 309–317 (1987).
Cohen, N. R. et al. Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1. Curr. Biol. 8, 26–33 (1998).
Lund, R. D. & Bunt, A. H. Prenatal development of central optic pathways in albino rats. J. Comp. Neurol. 165, 247–264 (1976).
Mooney, R., Penn, A. A., Gallego, R. & Shatz, C. J. Thalamic relay of spontaneous retinal activity prior to vision. Neuron 17, 863–874 (1996). This study supports the idea that early patterns of peripheral activity in sensory organs can elicit activation of thalamic projection neurons, which could propagate to the cortex at early stages.
Shatz, C. J. & Kirkwood, P. A. Prenatal development of functional connections in the cat's retinogeniculate pathway. J. Neurosci. 4, 1378–1397 (1984).
Ghosh, A. & Shatz, C. J. A role for subplate neurons in the patterning of connections from thalamus to neocortex. Development 117, 1031–1047 (1993).
Herrmann, K. & Shatz, C. J. Blockade of action potential activity alters initial arborization of thalamic axons within cortical layer 4. Proc. Natl Acad. Sci. USA 92, 11244–11248 (1995).
Rizo, J. & Sudhof, T. C. Snares and Munc18 in synaptic vesicle fusion. Nature Rev. Neurosci. 3, 641–653 (2002).
Washbourne, P. et al. Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nature Neurosci. 5, 19–26 (2002).
Molnár, Z. et al. Normal development of embryonic thalamocortical connectivity in the absence of evoked synaptic activity. J. Neurosci. 22, 10313–10323 (2002).
Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).
Yang, C. B., Zheng, Y. T., Li, G. Y. & Mower, G. D. Identification of munc13-3 as a candidate gene for critical-period neuroplasticity in visual cortex. J. Neurosci. 22, 8614–8618 (2002).