nature.com

Thalamocortical development: how are we going to get there? - Nature Reviews Neuroscience

  • ️Molnár, Zoltán
  • ️Tue Apr 01 2003
  • Rubenstein, J. L., Rakic, P. Special issue: genetic control of cortical development. Cereb. Cortex 9, 521–901 (1999).

    CAS  PubMed  Google Scholar 

  • O'Leary, D. D., Schlaggar, B. L. & Tuttle, R. Specification of neocortical areas and thalamocortical connections. Annu. Rev. Neurosci. 17, 419–439 (1994).

    CAS  PubMed  Google Scholar 

  • O'Leary, D. D. & Nakagawa, Y. Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex. Curr. Opin. Neurobiol. 12, 14–25 (2002). A comprehensive review on the early gene expression patterns and cortical regionalization.

    CAS  PubMed  Google Scholar 

  • Jones, E. G. The Thalamus (Plenum, New York, 1985).

    Google Scholar 

  • Northcutt, R. G. & Kaas, J. H. The emergence and evolution of mammalian neocortex. Trends Neurosci. 9, 373–379 (1995).

    Google Scholar 

  • Krubitzer, L. & Huffman, K. J. Arealization of the neocortex in mammals: genetic and epigenetic contributions to the phenotype. Brain Behav. Evol. 55, 322–335 (2000).

    CAS  PubMed  Google Scholar 

  • Bayer, S. A. & Altman, J. Neocortical Development (Raven, New York, 1991).

    Google Scholar 

  • Allendoerfer, K. L. & Shatz, C. J. The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu. Rev. Neurosci. 17, 185–218 (1994).

    CAS  PubMed  Google Scholar 

  • Molnár, Z. Development and evolution of thalamocortical interactions. Eur. J. Morphol. 38, 313–320 (2000).

    PubMed  Google Scholar 

  • McConnell, S. K., Ghosh, A. & Shatz, C. J. Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science 245, 978–982 (1989). The first detailed description of the pioneering projections from subplate to the internal capsule.

    CAS  PubMed  Google Scholar 

  • Altman, J. & Bayer, S. A. Development of the diencephalon in the rat. V. Thymidine-radiographic observations on internuclear and intranuclear gradients in the thalamus. J. Comp. Neurol. 188, 473–499 (1979).

    CAS  PubMed  Google Scholar 

  • Lund, R. D. & Mustari, M. J. Development of the geniculocortical pathway in rats. J. Comp. Neurol. 173, 289–306 (1977).

    CAS  PubMed  Google Scholar 

  • Mitrofanis, J. & Guillery, R. W. New views of the thalamic reticular nucleus in the adult and the developing brain. Trends Neurosci. 16, 240–245 (1993).

    CAS  PubMed  Google Scholar 

  • Molnár, Z. & Blakemore, C. How do thalamic axons find their way to the cortex? Trends Neurosci. 18, 389–397 (1995).

    PubMed  Google Scholar 

  • Puelles, L. & Rubenstein, J. L. Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci. 16, 472–479 (1993).

    CAS  PubMed  Google Scholar 

  • Nakagawa, Y. & O'Leary, D. D. Combinatorial expression patterns of LIM-homeodomain and other regulatory genes parcellate developing thalamus. J. Neurosci. 21, 2711–2725 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puelles, L. et al. Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2. 1, Pax-6, and Tbr-1. J. Comp. Neurol. 424, 409–438 (2000).

    CAS  PubMed  Google Scholar 

  • Stoykova, A. & Gruss, P. Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J. Neurosci. 14, 1395–1412 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molnár, Z. & Butler, A. B. The corticostriatal junction: a crucial region for forebrain development and evolution. Bioessays 24, 530–541 (2002).

    PubMed  Google Scholar 

  • Molnár, Z., Adams, R. & Blakemore, C. Mechanisms underlying the early establishment of thalamocortical connections in the rat. J. Neurosci. 18, 5723–5745 (1998).

    PubMed  PubMed Central  Google Scholar 

  • Métin, C. & Godement, P. The ganglionic eminence may be an intermediate target for corticofugal and thalamocortical axons. J. Neurosci. 16, 3219–3235 (1996). The first description of the guidepost cells situated in the internal capsule with early dorsal thalamic projections.

    PubMed  PubMed Central  Google Scholar 

  • Molnár, Z. & Cordery, P. Connections between cells of the internal capsule, thalamus, and cerebral cortex in embryonic rat. J. Comp. Neurol. 413, 1–25 (1999).

    PubMed  Google Scholar 

  • Donoghue, M. J. & Rakic, P. Molecular evidence for the early specification of presumptive functional domains in the embryonic primate cerebral cortex. J. Neurosci. 19, 5967–5979 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barbe, M. F. & Levitt, P. Attraction of specific thalamic input by cerebral grafts depends on the molecular identity of the implant. Proc. Natl Acad. Sci. USA 89, 3706–3710 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, S. C., Inoue, T., Kimura, Y., Tanaka, T. & Takeichi, M. Neuronal circuits are subdivided by differential expression of type-II classic cadherins in postnatal mouse brains. Mol. Cell. Neurosci. 9, 433–447 (1997).

    CAS  PubMed  Google Scholar 

  • Gao, P. P. et al. Regulation of thalamic neurite outgrowth by the Eph ligand ephrin-A5: implications in the development of thalamocortical projections. Proc. Natl Acad. Sci. USA 95, 5329–5334 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, L. et al. Neurotrophin-3 is required for appropriate establishment of thalamocortical connections. Neuron 36. 623–634 (2002).

    CAS  PubMed  Google Scholar 

  • McQuillen, P. S., DeFreitas, M. F., Zada, G. & Shatz, C. J. A novel role for p75NTR in subplate growth cone complexity and visual thalamocortical innervation. J. Neurosci. 22, 3580–3593 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serafini, T. et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87, 1001–1014 (1996).

    CAS  PubMed  Google Scholar 

  • Métin, C., Deleglise, D., Serafini, T., Kennedy, T. E. & Tessier-Lavigne, M. A role for netrin-1 in the guidance of cortical efferents. Development 124, 5063–5074 (1997). The first study indicating the role of netrin 1 in the development of early cortical connectivity.

    PubMed  Google Scholar 

  • Braisted, J. E., Tuttle, R. & O'Leary, D. D. Thalamocortical axons are influenced by chemorepellent and chemoattractant activities localized to decision points along their path. Dev. Biol. 208, 430–440 (1999).

    CAS  PubMed  Google Scholar 

  • Braisted, J. E. et al. Netrin-1 promotes thalamic axon growth and is required for proper development of the thalamocortical projection. J. Neurosci. 20, 5792–5801 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bagri, A. et al. Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron 33, 233–248 (2002).

    CAS  PubMed  Google Scholar 

  • Vanderhaeghen, P. et al. A mapping label required for normal scale of body representation in the cortex. Nature Neurosci. 3, 358–365 (2000).

    CAS  PubMed  Google Scholar 

  • Mackarehtschian, K., Lau, C. K., Caras, I. & McConnell, S. K. Regional differences in the developing cerebral cortex revealed by Ephrin-A5 expression. Cereb. Cortex 9, 601–610 (1999).

    CAS  PubMed  Google Scholar 

  • Mann, F., Peuckert, C., Dehner, F., Zhou, R. & Bolz, J. Ephrins regulate the formation of terminal axonal arbors during the development of thalamocortical projections. Development 129, 3945–3955 (2002).

    CAS  PubMed  Google Scholar 

  • Uziel, D. et al. Miswiring of limbic thalamocortical projections in the absence of ephrin-A5. J. Neurosci. 22, 9352–9357 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takemoto, M. et al. Ephrin-B3-EphA4 interactions regulate the growth of specific thalamocortical axon populations in vitro. Eur. J. Neurosci. 16, 1168–1172 (2002).

    PubMed  Google Scholar 

  • Matthes, D. J., Sink, H., Kolodkin, A. L. & Goodman, C. S. Semaphorin II can function as a selective inhibitor of specific synaptic arborizations. Cell 81, 631–639 (1995).

    CAS  PubMed  Google Scholar 

  • Raper, J. A. Semaphorins and their receptors in vertebrates and invertebrates. Curr. Opin. Neurobiol. 10, 88–94 (2000).

    CAS  PubMed  Google Scholar 

  • Skaliora, I., Singer, W., Betz, H. & Puschel, A. W. Differential patterns of semaphorin expression in the developing rat brain. Eur. J. Neurosci. 10, 1215–1229 (1998).

    CAS  PubMed  Google Scholar 

  • Messersmith, E. K. et al. Semaphorin III can function as a selective chemorepellent to pattern sensory projections in the spinal cord. Neuron 14, 949–959 (1995).

    CAS  PubMed  Google Scholar 

  • Bagnard, D., Lohrum, M., Uziel, D., Puschel, A. W. & Bolz, J. Semaphorins act as attractive and repulsive guidance signals during the development of cortical projections. Development 125, 5043–5053 (1998).

    CAS  PubMed  Google Scholar 

  • Bagnard, D., Chounlamountri, N., Puschel, A. W. & Bolz, J. Axonal surface molecules act in combination with semaphorin 3a during the establishment of corticothalamic projections. Cereb. Cortex 11, 278–285 (2001).

    CAS  PubMed  Google Scholar 

  • Leighton, P. A. et al. Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature 410, 174–179 (2001).

    CAS  PubMed  Google Scholar 

  • Garel, S., Yun, K., Grosschedl, R. & Rubenstein, J. L. The early topography of thalamocortical projections is shifted in Ebf1 and Dlx1/2 mutant mice. Development 129, 5621–5634 (2002). This study supports the idea that early thalamic targeting in the cortex depends on signals within the ventral telencephalon and that it might be independent from early cortical gene expression.

    CAS  PubMed  Google Scholar 

  • Crossley, P. H. & Martin, G. R. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121, 439–451 (1995).

    CAS  PubMed  Google Scholar 

  • Grove, E. A., Tole, S., Limon, J., Yip, L. & Ragsdale, C. W. The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125, 2315–2325 (1998).

    CAS  PubMed  Google Scholar 

  • Rubenstein, J. L. & Beachy, P. A. Patterning of the embryonic forebrain. Curr. Opin. Neurobiol. 8, 18–26 (1998).

    CAS  PubMed  Google Scholar 

  • Nakagawa, Y., Johnson, J. E. & O'Leary, D. D. Graded and areal expression patterns of regulatory genes and cadherins in embryonic neocortex independent of thalamocortical input. J. Neurosci. 19, 10877–10885 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyashita-Lin, E. M., Hevner, R., Wassarman, K. M., Martinez, S. & Rubenstein, J. L. Early neocortical regionalization in the absence of thalamic innervation. Science 285, 906–909 (1999). References 50 and 51 provided the first evidence indicating that the early cortical gene expression pattern is independent of embryonic thalamic input.

    CAS  PubMed  Google Scholar 

  • Donoghue, M. J. & Rakic, P. Molecular gradients and compartments in the embryonic primate cerebral cortex. Cereb. Cortex 9, 586–600 (1999).

    CAS  PubMed  Google Scholar 

  • Tuttle, R., Nakagawa, Y., Johnson, J. E. & O'Leary, D. D. Defects in thalamocortical axon pathfinding correlate with altered cell domains in Mash-1-deficient mice. Development 126, 1903–1916 (1999). This study provides strong support for the early guiding role of the internal capsule cells and their projections in the early development of thalamic projections.

    CAS  PubMed  Google Scholar 

  • Hevner, R. F., Miyashita-Lin, E. & Rubenstein, J. L. Cortical and thalamic axon pathfinding defects in Tbr1, Gbx2, and Pax6 mutant mice: evidence that cortical and thalamic axons interact and guide each other. J. Comp. Neurol. 447, 8–17 (2002). The experiments of this study indicate that an interaction between early corticofugal and thalamocortical projections is necessary for the correct development of both sets of fibres.

    PubMed  Google Scholar 

  • Stoykova, A., Fritsch, R., Walther, C. & Gruss, P. Forebrain patterning defects in Small eye mutant mice. Development 122, 3453–3465 (1996).

    CAS  PubMed  Google Scholar 

  • Jones, L., López-Bendito, G., Gruss, P., Stoykova, A. & Molnar, Z. Pax6 is required for the normal development of the forebrain axonal connections. Development 129, 5041–5052 (2002).

    CAS  PubMed  Google Scholar 

  • Bishop, K. M., Goudreau, G. & O'Leary, D. D. Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288, 344–349 (2000).

    CAS  PubMed  Google Scholar 

  • Mallamaci, A., Muzio, L., Chan, C. H., Parnavelas, J. & Boncinelli, E. Area identity shifts in the early cerebral cortex of Emx2−/− mutant mice. Nature Neurosci. 3, 679–686 (2000).

    CAS  PubMed  Google Scholar 

  • López-Bendito, G., Chan, C. H., Mallamaci, A., Parnavelas, J. & Molnár, Z. Role of Emx2 in the development of the reciprocal connectivity between cortex and thalamus. J. Comp. Neurol. 451, 153–169 (2002).

    PubMed  Google Scholar 

  • Pratt, T. et al. A role for Pax6 in the normal development of dorsal thalamus and its cortical connections. Development 127, 5167–5178 (2000). Using an elegant co-culture essay, this study provides evidence that thalamic cells are directly influenced by the lack of Pax6 , which might contribute to the pathfinding defects of early thalamocortical axons.

    CAS  PubMed  Google Scholar 

  • Molnár, Z. Development of Thalamocortical Connections (Springer, Heidelberg, 1998).

    Google Scholar 

  • McConnell, S. K., Ghosh, A. & Shatz, C. J. Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science 245, 978–982 (1989).

    CAS  PubMed  Google Scholar 

  • De Carlos, J. A. & O'Leary, D. D. Growth and targeting of subplate axons and establishment of major cortical pathways. J. Neurosci. 12, 1194–1211 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitrofanis, J. & Baker, G. E. Development of the thalamic reticular and perireticular nuclei in rats and their relationship to the course of growing corticofugal and corticopetal axons. J. Comp. Neurol. 338, 575–587 (1993).

    CAS  PubMed  Google Scholar 

  • Letinic, K. & Kostovic, I. Transient neuronal population of the internal capsule in the developing human cerebrum. Neuroreport 7, 2159–2162 (1996).

    CAS  PubMed  Google Scholar 

  • Zhou, C. et al. The nuclear orphan receptor COUP-TFI is required for differentiation of subplate neurons and guidance of thalamocortical axons. Neuron 24, 847–859 (1999). This study describes the premature death of subplate neurons in Coup-tfi -deficient mice, which leads to a reduction in thalamic axons growth through the internal capsule.

    CAS  PubMed  Google Scholar 

  • Marín, O., Baker, J., Puelles, L. & Rubenstein, J. L. Patterning of the basal telencephalon and hypothalamus is essential for guidance of cortical projections. Development 129, 761–773 (2002).

    PubMed  Google Scholar 

  • Rakic, P. Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 261, 467–471 (1976).

    CAS  PubMed  Google Scholar 

  • Shatz, C. J. & Luskin, M. B. The relationship between the geniculocortical afferents and their cortical target cells during development of the cat's primary visual cortex. J. Neurosci. 6, 3655–3668 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molnar, Z., Higashi, S., Adams, R. & Toyama, K. in Plasticity of Adult Barrel Cortex (ed. Kossut, M.) 47–79 (Graham Publishing, Johnson City, Tennessee, 2000).

    Google Scholar 

  • Krug, K., Smith, A. L. & Thompson, I. D. The development of topography in the hamster geniculo-cortical projection. J. Neurosci. 18, 5766–5776 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Catalano, S. M. & Shatz, C. J. Activity-dependent cortical target selection by thalamic axons. Science 281, 559–562 (1998). This study shows that blocking action potentials during early stages of development in the occipital cortex disrupts the entry and areal targeting of thalamic projections.

    CAS  PubMed  Google Scholar 

  • Naegele, J. R., Jhaveri, S. & Schneider, G. E. Sharpening of topographical projections and maturation of geniculocortical axon arbors in the hamster. J. Comp. Neurol. 277, 593–607 (1988).

    CAS  PubMed  Google Scholar 

  • Ghosh, A. & Shatz, C. J. Involvement of subplate neurons in the formation of ocular dominance columns. Science 255, 1441–1443 (1992).

    CAS  PubMed  Google Scholar 

  • Catalano, S. M., Robertson, R. T. & Killackey, H. P. Individual axon morphology and thalamocortical topography in developing rat somatosensory cortex. J. Comp. Neurol. 367, 36–53 (1996).

    CAS  PubMed  Google Scholar 

  • Friauf, E. & Shatz, C. J. Changing patterns of synaptic input to subplate and cortical plate during development of visual cortex. J. Neurophysiol. 66, 2059–2071 (1991).

    CAS  PubMed  Google Scholar 

  • Higashi, S., Molnár, Z., Kurotani, T. & Toyama, K. Prenatal development of neural excitation in rat thalamocortical projections studied by optical recording. Neuroscience 115, 1231–1246 (2002). Demonstrates the spatial and temporal distribution of cortical activation after direct thalamic stimulation in thalamocortical slices using optical recording of voltage-sensitive dyes.

    CAS  PubMed  Google Scholar 

  • Yamamoto, N., Kurotani, T. & Toyama, K. Neural connections between the lateral geniculate nucleus and visual cortex in vitro. Science 245, 192–194 (1989).

    CAS  PubMed  Google Scholar 

  • Yamamoto, N., Yamada, K., Kurotani, T. & Toyama, K. Laminar specificity of extrinsic cortical connections studied in coculture preparations. Neuron 9, 217–228 (1992).

    CAS  PubMed  Google Scholar 

  • Molnár, Z. & Blakemore, C. Lack of regional specificity for connections formed between thalamus and cortex in coculture. Nature 351, 475–477 (1991).

    PubMed  Google Scholar 

  • Bolz, J., Novak, N. & Staiger, V. Formation of specific afferent connections in organotypic slice cultures from rat visual cortex cocultured with lateral geniculate nucleus. J. Neurosci. 12, 3054–3070 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto, N., Higashi, S. & Toyama, K. Stop and branch behaviors of geniculocortical axons: a time-lapse study in organotypic cocultures. J. Neurosci. 17, 3653–3663 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto, N. et al. Characterization of factors regulating lamina-specific growth of thalamocortical axons. J. Neurobiol. 42, 56–68 (2000).

    CAS  PubMed  Google Scholar 

  • Yamamoto, N. Cellular and molecular basis for the formation of lamina-specific thalamocortical projections. Neurosci. Res. 42, 167–173 (2002).

    CAS  PubMed  Google Scholar 

  • Redies, C. & Takeichi, M. Expression of N-cadherin mRNA during development of the mouse brain. Dev. Dyn. 197, 26–39 (1993).

    CAS  PubMed  Google Scholar 

  • Polleux, F., Giger, R. J., Ginty, D. D., Kolodkin, A. L. & Ghosh, A. Patterning of cortical efferent projections by semaphorin-neuropilin interactions. Science 282, 1904–1906 (1998).

    CAS  PubMed  Google Scholar 

  • Oohira, A., Katoh-Semba, R., Watanabe, E. & Matsui, F. Brain development and multiple molecular species of proteoglycan. Neurosci. Res. 20, 195–207 (1994).

    CAS  PubMed  Google Scholar 

  • Watanabe, E. et al. A membrane-bound heparan sulfate proteoglycan that is transiently expressed on growing axons in the rat brain. J. Neurosci. Res. 44, 84–96 (1996).

    CAS  PubMed  Google Scholar 

  • Szebenyi, G. et al. Fibroblast growth factor-2 promotes axon branching of cortical neurons by influencing morphology and behavior of the primary growth cone. J. Neurosci. 21, 3932–3941 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, K. H. et al. Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell 96, 771–784 (1999).

    CAS  PubMed  Google Scholar 

  • Ozdinler, P. H. & Erzurumlu, R. S. Slit2, a branching-arborization factor for sensory axons in the Mammalian CNS. J. Neurosci. 22, 4540–4549 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rakic, P. Specification of cerebral cortical areas. Science 241, 170–176 (1988).

    CAS  PubMed  Google Scholar 

  • Rubenstein, J. L. et al. Genetic control of cortical regionalization and connectivity. Cereb. Cortex 9, 524–532 (1999).

    CAS  PubMed  Google Scholar 

  • Cohen-Tannoudji, M., Babinet, C. & Wassef, M. Early determination of a mouse somatosensory cortex marker. Nature 368, 460–463 (1994).

    CAS  PubMed  Google Scholar 

  • Levitt, P., Eagleson, K. L., Chan, A. V., Ferri, R. T. & Lillien, L. Signaling pathways that regulate specification of neurons in developing cerebral cortex. Dev. Neurosci. 19, 6–8 (1997).

    CAS  PubMed  Google Scholar 

  • Nothias, F., Fishell, G. & Ruiz i Altaba, A. Cooperation of intrinsic and extrinsic signals in the elaboration of regional identity in the posterior cerebral cortex. Curr. Biol. 8, 459–462 (1998).

    CAS  PubMed  Google Scholar 

  • Gitton, Y., Cohen-Tannoudji, M. & Wassef, M. Specification of somatosensory area identity in cortical explants. J. Neurosci. 19, 4889–4898 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bulfone, A. et al. T-brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron 15, 63–78 (1995).

    CAS  PubMed  Google Scholar 

  • Walther, C. & Gruss, P. Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113, 1435–1449 (1991).

    CAS  PubMed  Google Scholar 

  • Gulisano, M., Broccoli, V., Pardini, C. & Boncinelli, E. Emx1 and Emx2 show different patterns of expression during proliferation and differentiation of the developing cerebral cortex in the mouse. Eur. J. Neurosci. 8, 1037–1050 (1996).

    CAS  PubMed  Google Scholar 

  • Mallamaci, A. et al. EMX2 protein in the developing mouse brain and olfactory area. Mech. Dev. 77, 165–172 (1998).

    CAS  PubMed  Google Scholar 

  • Arimatsu, Y. et al. Early regional specification for a molecular neuronal phenotype in the rat neocortex. Proc. Natl Acad. Sci. USA 89, 8879–8883 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Q., Dwyer, N. D. & O'Leary, D. D. Differential expression of COUP-TFI, CHL1, and two novel genes in developing neocortex identified by differential display PCR. J. Neurosci. 20, 7682–7690 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pallas, S. L. Intrinsic and extrinsic factors that shape neocortical specification. Trends Neurosci. 24, 417–423 (2001).

    CAS  PubMed  Google Scholar 

  • Kaas, J. H., Florence, S. L. & Jain, N. Subcortical contributions to massive cortical reorganizations. Neuron 22:657–660 (1999).

    CAS  PubMed  Google Scholar 

  • Rakic, P., Suner, I. & Williams, R. W. A novel cytoarchitectonic area induced experimentally within the primate visual cortex. Proc. Natl Acad. Sci. USA 88, 2083–2087 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dehay, C., Giroud, P., Berland, M., Killackey, H. & Kennedy, H. Contribution of thalamic input to the specification of cytoarchitectonic cortical fields in the primate: effects of bilateral enucleation in the fetal monkey on the boundaries, dimensions, and gyrification of striate and extrastriate cortex. J. Comp. Neurol. 367, 70–89 (1996). An interesting study that indicates a direct link between thalamic input and cortical neural proliferation.

    CAS  PubMed  Google Scholar 

  • Kahn, D. M. & Krubitzer, L. Massive cross-modal cortical plasticity and the emergence of a new cortical area in developmentally blind mammals. Proc. Natl Acad. Sci. USA 99, 11429–11434 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Windrem, M. S. & Finlay, B. L. Thalamic ablations and neocortical development: alterations of cortical cytoarchitecture and cell number. Cereb. Cortex 1, 230–240 (1991).

    CAS  PubMed  Google Scholar 

  • Gaillard, A. & Roger, M. Early commitment of embryonic neocortical cells to develop area-specific thalamic connections. Cereb. Cortex 10, 443–453 (2000).

    CAS  PubMed  Google Scholar 

  • Dehay, C., Savatier, P., Cortay, V. & Kennedy, H. Cell-cycle kinetics of neocortical precursors are influenced by embryonic thalamic axons. J. Neurosci. 21, 201–214 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar, J. M. & Price, D. J. Radial migration in the cerebral cortex is enhanced by signals from thalamus. Eur. J. Neurosci. 13, 1745–1754 (2001). This study demonstrates that thalamic input stimulates cortical neural migration.

    CAS  PubMed  Google Scholar 

  • Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    CAS  PubMed  Google Scholar 

  • Woolsey, T. A. & Van der Loos, H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17, 205–242 (1970).

    CAS  PubMed  Google Scholar 

  • O'Leary, D. D., Ruff, N. L. & Dyck, R. H. Development, critical period plasticity, and adult reorganizations of mammalian somatosensory systems. Curr. Opin. Neurobiol. 4, 535–544 (1994).

    CAS  PubMed  Google Scholar 

  • Agmon, A., Yang, L. T., Jones, E. G. & O'Dowd, D. K. Topological precision in the thalamic projection to neonatal mouse barrel cortex. J. Neurosci. 15, 549–561 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuchi-Shimogori, T. & Grove, E. A. Neocortex patterning by the secreted signaling molecule FGF8. Science 294, 1071–1074 (2001).

    CAS  PubMed  Google Scholar 

  • Erzurumlu, R. S. & Kind, P. C. Neural activity: sculptor of 'barrels' in the neocortex. Trends Neurosci. 24, 589–595 (2001). A nice review on the pre- and post-synaptic elements involved in thalamocortical patterning and cytoarchitectonic differentiation in the barrel cortex in the rodent primary somatosensory cortex.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molnár, Z. & Hannan, A. J. Development of thalamocortical projections in normal and mutant mice. Results Probl. Cell Differ. 30, 293–332 (2000).

    PubMed  Google Scholar 

  • Rebsam, A., Seif, I. & Gaspar, P. Refinement of thalamocortical arbors and emergence of barrel domains in the primary somatosensory cortex: a study of normal and monoamine oxidase a knock-out mice. J. Neurosci. 22, 8541–8552 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cases, O. et al. Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16, 297–307 (1996).

    CAS  PubMed  Google Scholar 

  • Vitalis, T. et al. Effects of monoamine oxidase A inhibition on barrel formation in the mouse somatosensory cortex: determination of a sensitive developmental period. J. Comp. Neurol. 393, 169–184 (1998).

    CAS  PubMed  Google Scholar 

  • Salichon, N. et al. Excessive activation of serotonin (5-HT) 1B receptors disrupts the formation of sensory maps in monoamine oxidase a and 5-ht transporter knock-out mice. J. Neurosci. 21, 884–896 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bortolotto, Z. A., Fitzjohn, S. M. & Collingridge, G. L. Roles of metabotropic glutamate receptors in LTP and LTD in the hippocampus. Curr. Opin. Neurobiol. 9, 299–304 (1999).

    CAS  PubMed  Google Scholar 

  • Hannan, A. J. et al. PLC-β1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nature Neurosci. 4, 282–288 (2001). Together with reference 126, this is the first description of a separate alteration in the periphery-related patterning of thalamic projections from the cytoarchitectonic differentiation of barrels in the absence of Plcβ1 and mGluRs.

    CAS  PubMed  Google Scholar 

  • Iwasato, T. et al. Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 406, 726–731 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Datwani, A., Iwasato, T., Itohara, S. & Erzurumlu, R. S. NMDA receptor-dependent pattern transfer from afferents to postsynaptic cells and dendritic differentiation in the Barrel cortex. Mol. Cell. Neurosci. 21, 477–492 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caviness, V. S. Jr, Crandall, J. E. & Edwards, M. A. in Cerebral Cortex Vol. 7 (eds Jones, E. G. & Peters, A.) 59–89 (Plenum, New York, 1998).

    Google Scholar 

  • Caviness, V. S. Jr. Development of neocortical afferent systems: studies in the reeler mouse. Neurosci. Res. Program Bull. 20, 560–569 (1982).

    PubMed  Google Scholar 

  • Molnár, Z. & Blakemore, C. in Development of the Cerebral Cortex Symposium 193 (eds Bock, G. & Cardew, G.) 127–149 (Wiley, Chichester, UK, 1995).

    Google Scholar 

  • O'Brien, T. F., Steindler, D. A. & Cooper, N. G. Abnormal glial and glycoconjugate dispositions in the somatosensory cortical barrel field of the early postnatal reeler mutant mouse. Brain Res. 429, 309–317 (1987).

    CAS  PubMed  Google Scholar 

  • Cohen, N. R. et al. Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1. Curr. Biol. 8, 26–33 (1998).

    CAS  PubMed  Google Scholar 

  • Lund, R. D. & Bunt, A. H. Prenatal development of central optic pathways in albino rats. J. Comp. Neurol. 165, 247–264 (1976).

    CAS  PubMed  Google Scholar 

  • Mooney, R., Penn, A. A., Gallego, R. & Shatz, C. J. Thalamic relay of spontaneous retinal activity prior to vision. Neuron 17, 863–874 (1996). This study supports the idea that early patterns of peripheral activity in sensory organs can elicit activation of thalamic projection neurons, which could propagate to the cortex at early stages.

    CAS  PubMed  Google Scholar 

  • Shatz, C. J. & Kirkwood, P. A. Prenatal development of functional connections in the cat's retinogeniculate pathway. J. Neurosci. 4, 1378–1397 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh, A. & Shatz, C. J. A role for subplate neurons in the patterning of connections from thalamus to neocortex. Development 117, 1031–1047 (1993).

    CAS  PubMed  Google Scholar 

  • Herrmann, K. & Shatz, C. J. Blockade of action potential activity alters initial arborization of thalamic axons within cortical layer 4. Proc. Natl Acad. Sci. USA 92, 11244–11248 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rizo, J. & Sudhof, T. C. Snares and Munc18 in synaptic vesicle fusion. Nature Rev. Neurosci. 3, 641–653 (2002).

    CAS  Google Scholar 

  • Washbourne, P. et al. Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nature Neurosci. 5, 19–26 (2002).

    CAS  PubMed  Google Scholar 

  • Molnár, Z. et al. Normal development of embryonic thalamocortical connectivity in the absence of evoked synaptic activity. J. Neurosci. 22, 10313–10323 (2002).

    PubMed  PubMed Central  Google Scholar 

  • Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, C. B., Zheng, Y. T., Li, G. Y. & Mower, G. D. Identification of munc13-3 as a candidate gene for critical-period neuroplasticity in visual cortex. J. Neurosci. 22, 8614–8618 (2002).

    CAS  PubMed  PubMed Central  Google Scholar