nature.com

Pathogenesis of Parkinson disease—the gut–brain axis and environmental factors - Nature Reviews Neurology

  • ️Reichmann, Heinz
  • ️Tue Oct 27 2015
  • Hughes, A. J., Daniel, S. E., Kilford, L. & Lees, A. J. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55, 181–184 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haehner, A., Hummel, T. & Reichmann, H. Olfactory dysfunction as a diagnostic marker for Parkinson's disease. Expert Rev. Neurother. 9, 1773–1779 (2009).

    CAS  PubMed  Google Scholar 

  • Iranzo, A. et al. Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study. Lancet Neurol. 5, 572–577 (2006).

    PubMed  Google Scholar 

  • Abbott, R. D. et al. Frequency of bowel movements and the future risk of Parkinson's disease. Neurology 57, 456–462 (2001).

    CAS  PubMed  Google Scholar 

  • Jost, W. H. Gastrointestinal dysfunction in Parkinson's disease. J. Neurol. Sci. 289, 69–73 (2010).

    CAS  PubMed  Google Scholar 

  • Savica, R. et al. Medical records documentation of constipation preceding Parkinson disease: a case–control study. Neurology 73, 1752–1758 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cersosimo, M. G. et al. Gastrointestinal manifestations in Parkinson's disease: prevalence and occurrence before motor symptoms. J. Neurol. 260, 1332–1338 (2013).

    CAS  PubMed  Google Scholar 

  • Reichmann, H., Schneider, C. & Löhle, M. Non-motor features of Parkinson's disease: depression and dementia. Parkinsonism Relat. Disord. 15 (Suppl. 3), S87–S92 (2009).

    PubMed  Google Scholar 

  • Schrag, A., Jahanshahi, M. & Quinn, N. How does Parkinson's disease affect quality of life? A comparison with quality of life in the general population. Mov. Disord. 15, 1112–1118 (2000).

    CAS  PubMed  Google Scholar 

  • Martinez-Martin, P., Rodriguez-Blazquez, C., Kurtis, M. M. & Chaudhuri, K. R. The impact of non-motor symptoms on health-related quality of life of patients with Parkinson's disease. Mov. Disord. 26, 399–406 (2011).

    PubMed  Google Scholar 

  • Müller, B., Assmus, J., Herlofson, K., Larsen, J. P. & Tysnes, O. B. Importance of motor vs. non-motor symptoms for health-related quality of life in early Parkinson's disease. Parkinsonism Relat. Disord. 19, 1027–1032 (2013).

    PubMed  Google Scholar 

  • O'Sullivan, S. S. et al. Nonmotor symptoms as presenting complaints in Parkinson's disease: a clinicopathological study. Mov. Disord. 23, 101–106 (2008).

    PubMed  Google Scholar 

  • Gallagher, D. A., Lees, A. J. & Schrag, A. What are the most important nonmotor symptoms in patients with Parkinson's disease and are we missing them? Mov. Disord. 25, 2493–2500 (2010).

    PubMed  Google Scholar 

  • Gibb, W. R. & Lees, A. J. Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 54, 388–396 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goedert, M., Spillantini, M. G., Del Tredici, K. & Braak, H. 100 years of Lewy pathology. Nat. Rev. Neurol. 9, 13–24 (2013).

    CAS  PubMed  Google Scholar 

  • Halliday, G., McCann, H. & Shepherd, C. Evaluation of the Braak hypothesis: how far can it explain the pathogenesis of Parkinson's disease? Expert Rev. Neurother. 12, 673–686 (2012).

    CAS  PubMed  Google Scholar 

  • Reichmann, H. View point: etiology in Parkinson's disease. Dual hit or spreading intoxication. J. Neurol. Sci. 310, 9–11 (2011).

    PubMed  Google Scholar 

  • Pfeiffer, R. F. Gastrointestinal dysfunction in Parkinson's disease. Lancet Neurol. 2, 107–116 (2003).

    PubMed  Google Scholar 

  • Martinez-Martin, P. The importance of non-motor disturbances to quality of life in Parkinson's disease. J. Neurol. Sci. 310, 12–16 (2011).

    PubMed  Google Scholar 

  • Rodríguez-Violante, M., Cervantes-Arriaga, A., Villar-Velarde, A. & Corona, T. Prevalence of non-motor dysfunction among Parkinson's disease patients from a tertiary referral center in Mexico City. Clin. Neurol. Neurosurg. 112, 883–885 (2010).

    PubMed  Google Scholar 

  • Stern, M. B. & Siderowf, A. Parkinson's at risk syndrome: can Parkinson's disease be predicted? Mov. Disord. 25 (Suppl. 1), S89–S93 (2010).

    PubMed  Google Scholar 

  • Lang, A. E. A critical appraisal of the premotor symptoms of Parkinson's disease: potential usefulness in early diagnosis and design of neuroprotective trials. Mov. Disord. 26, 775–783 (2011).

    PubMed  Google Scholar 

  • Edwards, L. L., Pfeiffer, R. F., Quigley, E. M., Hofman, R. & Balluff, M. Gastrointestinal symptoms in Parkinson's disease. Mov. Disord. 6, 151–156 (1991).

    CAS  PubMed  Google Scholar 

  • Kaye, J., Gage, H., Kimber, A., Storey, L. & Trend, P. Excess burden of constipation in Parkinson's disease: a pilot study. Mov. Disord. 21, 1270–1273 (2006).

    PubMed  Google Scholar 

  • Chaudhuri, K. R., Healy, D. G. & Schapira, A. H. Non-motor symptoms of Parkinson's disease: diagnosis and management. Lancet Neurol. 5, 235–245 (2006).

    PubMed  Google Scholar 

  • Verbaan, D. et al. Patient-reported autonomic symptoms in Parkinson disease. Neurology 69, 333–341 (2007).

    CAS  PubMed  Google Scholar 

  • Goetze, O. et al. Predictors of gastric emptying in Parkinson's disease. Neurogastroenterol. Motil. 18, 369–375 (2006).

    CAS  PubMed  Google Scholar 

  • Chaudhuri, K. R. et al. International multicenter pilot study of the first comprehensive self-completed nonmotor symptoms questionnaire for Parkinson's disease: the NMSQuest study. Mov. Disord. 21, 916–923 (2006).

    PubMed  Google Scholar 

  • Martinez-Martin, P. et al. Prevalence of nonmotor symptoms in Parkinson's disease in an international setting; study using nonmotor symptoms questionnaire in 545 patients. Mov. Disord. 22, 1623–1629 (2007).

    PubMed  Google Scholar 

  • Pfeiffer, R. F. Gastrointestinal dysfunction in Parkinson's disease. Parkinsonism Relat. Disord. 17, 10–15 (2011).

    PubMed  Google Scholar 

  • Jost, W. H. Gastrointestinal motility problems in patients with Parkinson's disease. Effects of antiparkinsonian treatment and guidelines for management. Drugs Aging 10, 249–258 (1997).

    CAS  PubMed  Google Scholar 

  • Barone, P. et al. The PRIAMO study: a multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson's disease. Mov. Disord. 24, 1641–1649 (2009).

    PubMed  Google Scholar 

  • Korczyn, A. D. Autonomic nervous system disturbances in Parkinson's disease. Adv. Neurol. 53, 463–468 (1990).

    CAS  PubMed  Google Scholar 

  • Ashraf, W., Pfeiffer, R. F., Park, F., Lof, J. & Quigley, E. M. Constipation in Parkinson's disease: objective assessment and response to psyllium. Mov. Disord. 12, 946–951 (1997).

    CAS  PubMed  Google Scholar 

  • Adams-Carr, K. L. et al. Constipation preceding Parkinson's disease: a systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry (2015).

  • Cersosimo, M. G. & Benarroch, E. E. Neural control of the gastrointestinal tract: implications for Parkinson disease. Mov Disord. 23, 1065–1075 (2008).

    PubMed  Google Scholar 

  • Jost, W. H. & Schrank, B. Defecatory disorders in de novo Parkinsonians—colonic transit and electromyogram of the external anal sphincter. Wien Klin. Wochenschr. 110, 535–537 (1998).

    CAS  PubMed  Google Scholar 

  • Sakakibara, R. et al. Colonic transit time and rectoanal videomanometry in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 74, 268–272 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakakibara, R. et al. Bladder, bowel, and sexual dysfunction in Parkinson's disease. Parkinsons Dis. 2011, 924605 (2011).

    PubMed  PubMed Central  Google Scholar 

  • Wang, C. P., Sung, W. H., Wang, C. C. & Tsai, P. Y. Early recognition of pelvic floor dyssynergia and colorectal assessment in Parkinson's disease associated with bowel dysfunction. Colorectal Dis. 15, e130–e137 (2013).

    PubMed  Google Scholar 

  • Cersosimo, M. G. & Benarroch, E. E. Pathological correlates of gastrointestinal dysfunction in Parkinson's disease. Neurobiol. Dis. 46, 559–564 (2012).

    PubMed  Google Scholar 

  • Edwards, L. L., Quigley, E. M., Harned, R. K., Hofman, R. & Pfeiffer, R. F. Characterization of swallowing and defecation in Parkinson's disease. Am. J. Gastroenterol. 89, 15–25 (1994).

    CAS  PubMed  Google Scholar 

  • Jost, W. H. & Schimrigk, K. Constipation in Parkinson's disease. Klin. Wochenschr. 69, 906–909 (1991).

    CAS  PubMed  Google Scholar 

  • Edwards, L. L., Quigley, E. M. & Pfeiffer, R. F. Gastrointestinal dysfunction in Parkinson's disease: frequency and pathophysiology. Neurology 42, 726–732 (1992).

    CAS  PubMed  Google Scholar 

  • Bassotti, G. et al. Manometric investigation of anorectal function in early and late stage Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 68, 768–770 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathers, S. E., Kempster, P. A., Swash, M. & Lees, A. J. Constipation and paradoxical puborectalis contraction in anismus and Parkinson's disease: a dystonic phenomenon? J. Neurol. Neurosurg. Psychiatry 51, 1503–1507 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf, W., Pfeiffer, R. F. & Quigley, E. M. Anorectal manometry in the assessment of anorectal function in Parkinson's disease: a comparison with chronic idiopathic constipation. Mov. Disord. 9, 655–663 (1994).

    CAS  PubMed  Google Scholar 

  • Jost, W. H., Schrank, B., Herold, A. & Leiss, O. Functional outlet obstruction: anismus, spastic pelvic floor syndrome, and dyscoordination of the voluntary sphincter muscles. Definition, diagnosis, and treatment from the neurologic point of view. Scand. J. Gastroenterol. 34, 449–453 (1999).

    CAS  PubMed  Google Scholar 

  • Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    CAS  PubMed  Google Scholar 

  • Gaspar, P. & Gray, F. Dementia in idiopathic Parkinson's disease. A neuropathological study of 32 cases. Acta Neuropathol. 64, 43–52 (1984).

    CAS  PubMed  Google Scholar 

  • Braak, H. et al. Pattern of brain destruction in Parkinson's and Alzheimer's diseases. J. Neural Transm. 103, 455–490 (1996).

    CAS  PubMed  Google Scholar 

  • Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211 (2003).

    PubMed  Google Scholar 

  • Braak, H., Ghebremedhin, E., Rub, U., Bratzke, H. & Del Tredici, K. Stages in the development of Parkinson's disease-related pathology. Cell Tissue Res. 318, 121–134 (2004).

    PubMed  Google Scholar 

  • Del Tredici, K., Rub, U., De Vos, R. A., Bohl, J. R. & Braak, H. Where does parkinson disease pathology begin in the brain? J. Neuropathol. Exp. Neurol. 61, 413–426 (2002).

    PubMed  Google Scholar 

  • Braak, H. & Del Tredici, K. Neuroanatomy and pathology of sporadic Parkinson's disease. Adv. Anat. Embryol. Cell Biol. 201, 1–119 (2009).

    PubMed  Google Scholar 

  • Braak, H., Rub, U., Gai, W. P. & Del Tredici, K. Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. 110, 517–536 (2003).

    CAS  PubMed  Google Scholar 

  • Hawkes, C. H., Del Tredici, K. & Braak, H. Parkinson's disease: a dual-hit hypothesis. Neuropathol. Appl. Neurobiol. 33, 599–614 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beach, T. G. et al. Olfactory bulb α-synucleinopathy has high specificity and sensitivity for Lewy body disorders. Acta Neuropathol. 117, 169–174 (2009).

    CAS  PubMed  Google Scholar 

  • Braak, H., de Vos, R. A., Bohl, J. & Del Tredici, K. Gastric α-synuclein immunoreactive inclusions in Meissner's and Auerbach's plexuses in cases staged for Parkinson's disease-related brain pathology. Neurosci. Lett. 396, 67–72 (2006).

    CAS  PubMed  Google Scholar 

  • Del Tredici, K., Hawkes, C. H., Ghebremedhin, E. & Braak, H. Lewy pathology in the submandibular gland of individuals with incidental Lewy body disease and sporadic Parkinson's disease. Acta Neuropathol. 119, 703–713 (2010).

    PubMed  Google Scholar 

  • Orimo, S. et al. Cardiac sympathetic denervation precedes neuronal loss in the sympathetic ganglia in Lewy body disease. Acta Neuropathol. 109, 583–588 (2005).

    PubMed  Google Scholar 

  • Minguez-Castellanos, A. et al. Do α-synuclein aggregates in autonomic plexuses predate Lewy body disorders?: a cohort study. Neurology 68, 2012–2018 (2007).

    CAS  PubMed  Google Scholar 

  • Wakabayashi, K., Takahashi, H., Ohama, E. & Ikuta, F. Parkinson's disease: an immunohistochemical study of Lewy body-containing neurons in the enteric nervous system. Acta Neuropathol. 79, 581–583 (1990).

    CAS  PubMed  Google Scholar 

  • Braak, H., Sastre, M., Bohl, J. R., de Vos, R. A. & Del Tredici, K. Parkinson's disease: lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons. Acta Neuropathol. 113, 421–429 (2007).

    PubMed  Google Scholar 

  • Wakabayashi, K., Takahashi, H., Takeda, S., Ohama, E. & Ikuta, F. Parkinson's disease: the presence of Lewy bodies in Auerbach's and Meissner's plexuses. Acta Neuropathol. 76, 217–221 (1988).

    CAS  PubMed  Google Scholar 

  • Kupsky, W. J., Grimes, M. M., Sweeting, J., Bertsch, R. & Cote, L. J. Parkinson's disease and megacolon: concentric hyaline inclusions (Lewy bodies) in enteric ganglion cells. Neurology 37, 1253–1255 (1987).

    CAS  PubMed  Google Scholar 

  • Lebouvier, T. et al. Pathological lesions in colonic biopsies during Parkinson's disease. Gut 57, 1741–1743 (2008).

    CAS  PubMed  Google Scholar 

  • Qualman, S. J., Haupt, H. M., Yang, P. & Hamilton, S. R. Esophageal Lewy bodies associated with ganglion cell loss in achalasia. Similarity to Parkinson's disease. Gastroenterology 87, 848–856 (1984).

    CAS  PubMed  Google Scholar 

  • Abbott, R. D. et al. Bowel movement frequency in late-life and incidental Lewy bodies. Mov. Disord. 22, 1581–1586 (2007).

    PubMed  Google Scholar 

  • Petrovitch, H. et al. Bowel movement frequency in late-life and substantia nigra neuron density at death. Mov. Disord. 24, 371–376 (2009).

    PubMed  PubMed Central  Google Scholar 

  • Del Tredici, K. & Braak, H. Spinal cord lesions in sporadic Parkinson's disease. Acta Neuropathol. 124, 643–664 (2012).

    CAS  PubMed  Google Scholar 

  • Bloch, A., Probst, A., Bissig, H., Adams, H. & Tolnay, M. α-Synuclein pathology of the spinal and peripheral autonomic nervous system in neurologically unimpaired elderly subjects. Neuropathol. Appl. Neurobiol. 32, 284–295 (2006).

    CAS  PubMed  Google Scholar 

  • Albin, R. L., Young, A. B. & Penney, J. B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989).

    CAS  PubMed  Google Scholar 

  • Klingelhoefer, L. & Reichmann, H. Dementia—the real problem for patients with Parkinson's disease Basal Ganglia 4, 9–13 (2014).

    Google Scholar 

  • Kalaitzakis, M. E., Graeber, M. B., Gentleman, S. M. & Pearce, R. K. The dorsal motor nucleus of the vagus is not an obligatory trigger site of Parkinson's disease: a critical analysis of α-synuclein staging. Neuropathol. Appl. Neurobiol. 34, 284–295 (2008).

    CAS  PubMed  Google Scholar 

  • Attems, J. & Jellinger, K. A. The dorsal motor nucleus of the vagus is not an obligatory trigger site of Parkinson's disease. Neuropathol. Appl. Neurobiol. 34, 466–467 (2008).

    CAS  PubMed  Google Scholar 

  • Zaccai, J., Brayne, C., McKeith, I., Matthews, F. & Ince, P. G. Patterns and stages of α-synucleinopathy: Relevance in a population-based cohort. Neurology 70, 1042–1048 (2008).

    CAS  PubMed  Google Scholar 

  • Parkkinen, L., Pirttila, T. & Alafuzoff, I. Applicability of current staging/categorization of α-synuclein pathology and their clinical relevance. Acta Neuropathol. 115, 399–407 (2008).

    PubMed  PubMed Central  Google Scholar 

  • Jellinger, K. A. Lewy body-related α-synucleinopathy in the aged human brain. J. Neural Transm. 111, 1219–1235 (2004).

    CAS  PubMed  Google Scholar 

  • Jellinger, K. A. α-Synuclein pathology in Parkinson's and Alzheimer's disease brain: incidence and topographic distribution--a pilot study. Acta Neuropathol. 106, 191–201 (2003).

    PubMed  Google Scholar 

  • Beach, T. G. et al. Multi-organ distribution of phosphorylated α-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol. 119, 689–702 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gelpi, E. et al. Multiple organ involvement by alpha-synuclein pathology in Lewy body disorders. Mov. Disord. 29, 1010–1018 (2014).

    PubMed  Google Scholar 

  • Annerino, D. M. et al. Parkinson's disease is not associated with gastrointestinal myenteric ganglion neuron loss. Acta Neuropathol. 124, 665–680 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Lebouvier, T. et al. Colonic biopsies to assess the neuropathology of Parkinson's disease and its relationship with symptoms. PLoS ONE 5, e12728 (2010).

    PubMed  PubMed Central  Google Scholar 

  • De Giorgio, R. et al. Enteric glia and neuroprotection: basic and clinical aspects. Am. J. Physiol. Gastrointest Liver Physiol. 303, G887–G893 (2012).

    CAS  PubMed  Google Scholar 

  • Devos, D. et al. Colonic inflammation in Parkinson's disease. Neurobiol. Dis. 50, 42–48 (2013).

    CAS  PubMed  Google Scholar 

  • Clairembault, T. et al. Enteric GFAP expression and phosphorylation in Parkinson's disease. J. Neurochem. 130, 805–815 (2014).

    CAS  PubMed  Google Scholar 

  • Bassotti, G. et al. The role of glial cells and apoptosis of enteric neurones in the neuropathology of intractable slow transit constipation. Gut 55, 41–46 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forsyth, C. B. et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease. PLoS ONE 6, e28032 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clairembault, T., Leclair-Visonneau, L., Neunlist, M. & Derkinderen, P. Enteric glial cells: new players in Parkinson's disease? Mov. Disord. 30, 494–498 (2015).

    PubMed  Google Scholar 

  • Singaram, C. et al. Dopaminergic defect of enteric nervous system in Parkinson's disease patients with chronic constipation. Lancet 346, 861–864 (1995).

    CAS  PubMed  Google Scholar 

  • Parkkinen, L., Soininen, H., Laakso, M. & Alafuzoff, I. α-Synuclein pathology is highly dependent on the case selection. Neuropathol. Appl. Neurobiol. 27, 314–325 (2001).

    CAS  PubMed  Google Scholar 

  • Saito, Y. et al. Lewy body-related α-synucleinopathy in aging. J. Neuropathol. Exp. Neurol. 63, 742–749 (2004).

    PubMed  Google Scholar 

  • Lai, B. C., Marion, S. A., Teschke, K. & Tsui, J. K. Occupational and environmental risk factors for Parkinson's disease. Parkinsonism Relat. Disord. 8, 297–309 (2002).

    CAS  PubMed  Google Scholar 

  • Priyadarshi, A., Khuder, S. A., Schaub, E. A. & Priyadarshi, S. S. Environmental risk factors and Parkinson's disease: a metaanalysis. Environ. Res. 86, 122–127 (2001).

    CAS  PubMed  Google Scholar 

  • Gorell, J. M., Johnson, C. C., Rybicki, B. A., Peterson, E. L. & Richardson, R. J. The risk of Parkinson's disease with exposure to pesticides, farming, well water, and rural living. Neurology 50, 1346–1350 (1998).

    CAS  PubMed  Google Scholar 

  • Gatto, N. M., Cockburn, M., Bronstein, J., Manthripragada, A. D. & Ritz, B. Well-water consumption and Parkinson's disease in rural California. Environ. Health Perspect. 117, 1912–1918 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seidler, A. et al. Possible environmental, occupational, and other etiologic factors for Parkinson's disease: a case–control study in Germany. Neurology 46, 1275–1284 (1996).

    CAS  PubMed  Google Scholar 

  • Fleming, L., Mann, J. B., Bean, J., Briggle, T. & Sanchez-Ramos, J. R. Parkinson's disease and brain levels of organochlorine pesticides. Ann. Neurol. 36, 100–103 (1994).

    CAS  PubMed  Google Scholar 

  • Semchuk, K. M., Love, E. J. & Lee, R. G. Parkinson's disease and exposure to agricultural work and pesticide chemicals. Neurology 42, 1328–1335 (1992).

    CAS  PubMed  Google Scholar 

  • Manning-Bog, A. B. et al. The herbicide paraquat causes up-regulation and aggregation of α-synuclein in mice: paraquat and α-synuclein. J. Biol. Chem. 277, 1641–1644 (2002).

    CAS  PubMed  Google Scholar 

  • Huang, C. C. et al. Progression after chronic manganese exposure. Neurology 43, 1479–1483 (1993).

    CAS  PubMed  Google Scholar 

  • Tanner, C. M. et al. Rotenone, paraquat, and Parkinson's disease. Environ. Health Perspect. 119, 866–872 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baron, J. A. Cigarette smoking and Parkinson's disease. Neurology 36, 1490–1496 (1986).

    CAS  PubMed  Google Scholar 

  • Ascherio, A. et al. Prospective study of caffeine consumption and risk of Parkinson's disease in men and women. Ann. Neurol. 50, 56–63 (2001).

    CAS  PubMed  Google Scholar 

  • Derkinderen, P., Shannon, K. M. & Brundin, P. Gut feelings about smoking and coffee in Parkinson's disease. Mov. Disord. 29, 976–979 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Scheperjans, F., Pekkonen, E., Kaakkola, S. & Auvinen, P. Linking smoking, coffee, urate, and Parkinson's disease—a role for gut microbiota? J. Parkinsons Dis. (2015).

  • Scheperjans, F. et al. Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov. Disord. 30, 350–358 (2015).

    PubMed  Google Scholar 

  • Forsythe, P. & Kunze, W. A. Voices from within: gut microbes and the CNS. Cell. Mol. Life Sci. 70, 55–69 (2013).

    CAS  PubMed  Google Scholar 

  • Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).

    CAS  PubMed  Google Scholar 

  • Marras, C. & Lang, A. Parkinson's disease subtypes: lost in translation? J. Neurol. Neurosurg. Psychiatry 84, 409–415 (2013).

    PubMed  Google Scholar 

  • van Rooden, S. M. et al. Clinical subtypes of Parkinson's disease. Mov. Disord. 26, 51–58 (2011).

    PubMed  Google Scholar 

  • Ulusoy, A. et al. Caudo-rostral brain spreading of α-synuclein through vagal connections. EMBO Mol. Med. 5, 1051–1059 (2013).

    CAS  PubMed Central  Google Scholar 

  • Perez-Burgos, A. et al. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents. Am. J. Physiol. Gastrointest Liver Physiol. 304, G211–G220 (2013).

    CAS  PubMed  Google Scholar 

  • Bravo, J. A. et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl Acad. Sci. USA 108, 16050–16055 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Svensson, E. et al. Vagotomy and subsequent risk of Parkinson's disease. Ann. Neurol. 78, 522–529 (2015).

    PubMed  Google Scholar 

  • Tan, A. H. et al. Small intestinal bacterial overgrowth in Parkinson's disease. Parkinsonism Relat. Disord. 20, 535–540 (2014).

    PubMed  Google Scholar 

  • Fasano, A. et al. The role of small intestinal bacterial overgrowth in Parkinson's disease. Mov. Disord. 28, 1241–1249 (2013).

    CAS  PubMed  Google Scholar 

  • Tan, A. H. et al. Helicobacter pylori infection is associated with worse severity of Parkinson's disease. Parkinsonism Relat. Disord. 21, 221–225 (2015).

    PubMed  Google Scholar 

  • Rees, K. et al. Helicobacter pylori eradication for Parkinson's disease. Cochrane Database of Systematic Reviews, Issue 11 Art. No.: CD008453. http://dx.doi.org/10.1002/14651858.CD008453.pub2.

  • Lee, W. Y., Yoon, W. T., Shin, H. Y., Jeon, S. H. & Rhee, P. L. Helicobacter pylori infection and motor fluctuations in patients with Parkinson's disease. Mov. Disord. 23, 1696–1700 (2008).

    PubMed  Google Scholar 

  • Narozanska, E. et al. Pharmacokinetics of levodopa in patients with Parkinson disease and motor fluctuations depending on the presence of Helicobacter pylori infection. Clin. Neuropharmacol. 37, 96–99 (2014).

    CAS  PubMed  Google Scholar 

  • Logroscino, G. et al. Dietary lipids and antioxidants in Parkinson's disease: a population-based, case–control study. Ann. Neurol. 39, 89–94 (1996).

    CAS  PubMed  Google Scholar 

  • Anderson, C. et al. Dietary factors in Parkinson's disease: the role of food groups and specific foods. Mov. Disord. 14, 21–27 (1999).

    CAS  PubMed  Google Scholar 

  • Abbott, R. D. et al. Environmental, life-style, and physical precursors of clinical Parkinson's disease: recent findings from the Honolulu–Asia Aging Study. J. Neurol. 250 (Suppl. 3), III30–III39 (2003).

    PubMed  Google Scholar 

  • Chen, H., Zhang, S. M., Hernan, M. A., Willett, W. C. & Ascherio, A. Dietary intakes of fat and risk of Parkinson's disease. Am. J. Epidemiol. 157, 1007–1014 (2003).

    PubMed  Google Scholar 

  • de Lau, L. M. et al. Dietary fatty acids and the risk of Parkinson disease: the Rotterdam study. Neurology 64, 2040–2045 (2005).

    CAS  PubMed  Google Scholar 

  • Powers, K. M. et al. Dietary fats, cholesterol and iron as risk factors for Parkinson's disease. Parkinsonism Relat. Disord. 15, 47–52 (2009).

    PubMed  Google Scholar 

  • Miyake, Y. et al. Dietary fat intake and risk of Parkinson's disease: a case-control study in Japan. J. Neurol. Sci. 288, 117–122 (2010).

    CAS  PubMed  Google Scholar 

  • Kamel, F. et al. Dietary fat intake, pesticide use, and Parkinson's disease. Parkinsonism Relat. Disord. 20, 82–87 (2014).

    PubMed  Google Scholar 

  • Bove, J., Prou, D., Perier, C. & Przedborski, S. Toxin-induced models of Parkinson's disease. NeuroRx 2, 484–494 (2005).

    PubMed  PubMed Central  Google Scholar 

  • McDowell, K. & Chesselet, M. F. Animal models of the non-motor features of Parkinson's disease. Neurobiol. Dis. 46, 597–606 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Hisahara, S. & Shimohama, S. Toxin-induced and genetic animal models of Parkinson's disease. Parkinsons Dis. 2011, 951709 (2010).

    PubMed  PubMed Central  Google Scholar 

  • Betarbet, R. et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci. 3, 1301–1306 (2000).

    CAS  PubMed  Google Scholar 

  • Hoglinger, G. U. et al. Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J. Neurochem. 84, 491–502 (2003).

    CAS  PubMed  Google Scholar 

  • Rojo, A. I., Cavada, C., de Sagarra, M. R. & Cuadrado, A. Chronic inhalation of rotenone or paraquat does not induce Parkinson's disease symptoms in mice or rats. Exp. Neurol. 208, 120–126 (2007).

    CAS  PubMed  Google Scholar 

  • Pan-Montojo, F. et al. Progression of Parkinson's disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS ONE 5, e8762 (2010).

    PubMed  PubMed Central  Google Scholar 

  • Inden, M. et al. Neurodegeneration of mouse nigrostriatal dopaminergic system induced by repeated oral administration of rotenone is prevented by 4-phenylbutyrate, a chemical chaperone. J. Neurochem. 101, 1491–1504 (2007).

    CAS  PubMed  Google Scholar 

  • Tasselli, M. et al. Effects of oral administration of rotenone on gastrointestinal functions in mice. Neurogastroenterol. Motil. 25, e183–e193 (2013).

    CAS  PubMed  Google Scholar 

  • Sherer, T. B., Kim, J. H., Betarbet, R. & Greenamyre, J. T. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation. Exp. Neurol. 179, 9–16 (2003).

    CAS  PubMed  Google Scholar 

  • Silva, B. A., Einarsdottir, O., Fink, A. L. & Uversky, V. N. Biophysical characterization of α-synuclein and rotenone interaction. Biomolecules 3, 703–732 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Yuan, Y. H. et al. The molecular mechanism of rotenone-induced α-synuclein aggregation: emphasizing the role of the calcium/GSK3β pathway. Toxicol. Lett. 233, 163–171 (2015).

    CAS  PubMed  Google Scholar 

  • Chorfa, A. et al. A variety of pesticides trigger in vitro α-synuclein accumulation, a key event in Parkinson's disease. Arch. Toxicol. http://dx.doi.org/10.1007/s00204-014-1388-2.

  • Danzer, K. M. et al. Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol. Neurodegener. 7, 42 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Angot, E. et al. Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo. PLoS ONE 7, e39465 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desplats, P. et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc. Natl Acad. Sci. USA 106, 13010–13015 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brundin, P., Li, J. Y., Holton, J. L., Lindvall, O. & Revesz, T. Research in motion: the enigma of Parkinson's disease pathology spread. Nat. Rev. Neurosci. 9, 741–745 (2008).

    CAS  PubMed  Google Scholar 

  • Li, J. Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat. Med. 14, 501–503 (2008).

    CAS  PubMed  Google Scholar 

  • Kordower, J. H. & Brundin, P. Lewy body pathology in long-term fetal nigral transplants: is Parkinson's disease transmitted from one neural system to another? Neuropsychopharmacology 34, 254 (2009).

    PubMed  Google Scholar 

  • Pan-Montojo, F. et al. Environmental toxins trigger PD-like progression via increased α-synuclein release from enteric neurons in mice. Sci. Rep. 2, 898 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Ling, E. A., Shieh, J. Y., Wen, C. Y., Yick, T. Y. & Wong, W. C. The dorsal motor nucleus of the vagus nerve of the hamster: ultrastructure of vagal neurons and their responses to vagotomy. J. Anat. 152, 161–172 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holmqvist, S. et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol. 128, 805–820 (2014).

    PubMed  Google Scholar 

  • Hardy, J. Expression of normal sequence pathogenic proteins for neurodegenerative disease contributes to disease risk: 'permissive templating' as a general mechanism underlying neurodegeneration. Biochem. Soc. Trans. 33, 578–581 (2005).

    CAS  PubMed  Google Scholar 

  • Schapira, A. H. Disease modification in Parkinson's disease. Lancet Neurol. 3, 362–368 (2004).

    CAS  PubMed  Google Scholar 

  • Mizuno, Y. et al. Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease. Biochem. Biophys. Res. Commun. 163, 1450–1455 (1989).

    CAS  PubMed  Google Scholar 

  • Franco-Iborra, S., Vila, M. & Perier, C. The Parkinson disease mitochondrial hypothesis: where are we at? Neuroscientist http://dx.doi.org/10.1177/1073858415574600.

  • Jenner, P. Oxidative stress in Parkinson's disease. Ann. Neurol. 53 (Suppl. 3), S26–S36 (2003).

    CAS  PubMed  Google Scholar 

  • McGeer, P. L. & McGeer, E. G. Inflammation and neurodegeneration in Parkinson's disease. Parkinsonism Relat. Disord. 10 (Suppl. 1), S3–S7 (2004).

    PubMed  Google Scholar 

  • Gao, H. M., Hong, J. S., Zhang, W. & Liu, B. Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson's disease. J. Neurosci. 23, 1228–1236 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Erviti, L. et al. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol. Dis. 42, 360–367 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa, T. et al. The AAA-ATPase VPS4 regulates extracellular secretion and lysosomal targeting of α-synuclein. PLoS ONE 6, e29460 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luk, K. C. et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, H. J. et al. Assembly-dependent endocytosis and clearance of extracellular α-synuclein. Int. J. Biochem. Cell Biol. 40, 1835–1849 (2008).

    CAS  PubMed  Google Scholar 

  • Braidy, N. et al. Alpha-synuclein transmission and mitochondrial toxicity in primary human foetal enteric neurons in vitro. Neurotox. Res. 25, 170–182 (2014).

    CAS  PubMed  Google Scholar 

  • Esteves, A. R., Arduino, D. M., Silva, D. F., Oliveira, C. R. & Cardoso, S. M. Mitochondrial dysfunction: the road to alpha-synuclein oligomerization in PD. Parkinsons Dis. 2011, 693761 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, W. S., Palmiter, R. D. & Xia, Z. Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson's disease model. J. Cell Biol. 192, 873–882 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greenamyre, J. T., Betarbet, R. & Sherer, T. B. The rotenone model of Parkinson's disease: genes, environment and mitochondria. Parkinsonism Relat. Disord. 9 (Suppl. 2), S59–S64 (2003).

    PubMed  Google Scholar 

  • Klegeris, A. et al. Alpha-synuclein and its disease-causing mutants induce ICAM-1 and IL-6 in human astrocytes and astrocytoma cells. FASEB J. 20, 2000–2008 (2006).

    CAS  PubMed  Google Scholar 

  • McGeer, P. L. & McGeer, E. G. The α-synuclein burden hypothesis of Parkinson disease and its relationship to Alzheimer disease. Exp. Neurol. 212, 235–238 (2008).

    CAS  PubMed  Google Scholar 

  • Hunot, S. et al. FcepsilonRII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J. Neurosci. 19, 3440–3447 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner, J. et al. Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson's disease. Acta Neuropathol. 125, 795–813 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, M., Han, S. & Fink, A. L. Oxidized quercetin inhibits α-synuclein fibrillization. Biochim. Biophys. Acta 1830, 2872–2881 (2013).

    CAS  PubMed  Google Scholar 

  • Horvath, I. et al. Modulation of α-synuclein fibrillization by ring-fused 2-pyridones: templation and inhibition involve oligomers with different structure. Arch. Biochem. Biophys. 532, 84–90 (2013).

    CAS  PubMed  Google Scholar 

  • Shaltiel-Karyo, R. et al. Differential inhibition of α-synuclein oligomeric and fibrillar assembly in parkinson's disease model by cinnamon extract. Biochim. Biophys. Acta 1820, 1628–1635 (2012).

    CAS  PubMed  Google Scholar 

  • McLean, P. J. et al. TorsinA and heat shock proteins act as molecular chaperones: suppression of α-synuclein aggregation. J. Neurochem. 83, 846–854 (2002).

    CAS  PubMed  Google Scholar 

  • Du, Y. et al. Histone deacetylase 6 regulates cytotoxic α-synuclein accumulation through induction of the heat shock response. Neurobiol. Aging 35, 2316–2328 (2014).

    CAS  PubMed  Google Scholar 

  • Faria, C. et al. Inhibition of formation of α-synuclein inclusions by mannosylglycerate in a yeast model of Parkinson's disease. Biochim. Biophys. Acta 1830, 4065–4072 (2013).

    CAS  PubMed  Google Scholar 

  • Spencer, B. et al. ESCRT-mediated uptake and degradation of brain-targeted α-synuclein single chain antibody attenuates neuronal degeneration in vivo. Mol. Ther. 22, 1753–1767 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Games, D. et al. Reducing C-terminal-truncated alpha-ynuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson's disease-like models. J. Neurosci. 34, 9441–9454 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Besong-Agbo, D. et al. Naturally occurring α-synuclein autoantibody levels are lower in patients with Parkinson disease. Neurology 80, 169–175 (2013).

    CAS  PubMed  Google Scholar 

  • Lindstrom, V. et al. Immunotherapy targeting α-synuclein protofibrils reduced pathology in (Thy-1)-h[A30P] α-synuclein mice. Neurobiol. Dis. 69, 134–143 (2014).

    PubMed  Google Scholar 

  • Tran, H. T. et al. α-Synuclein immunotherapy blocks uptake and templated propagation of misfolded α-synuclein and neurodegeneration. Cell Rep. 7, 2054–2065 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menke, T. et al. Coenzyme Q10 reduces the toxicity of rotenone in neuronal cultures by preserving the mitochondrial membrane potential. Biofactors 18, 65–72 (2003).

    CAS  PubMed  Google Scholar 

  • Storch, A. et al. Randomized, double-blind, placebo-controlled trial on symptomatic effects of coenzyme Q10 in Parkinson disease. Arch. Neurol. 64, 938–944 (2007).

    PubMed  Google Scholar 

  • Sandoval-Acuna, C., Ferreira, J. & Speisky, H. Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Arch. Biochem. Biophys. 559, 75–90 (2014).

    CAS  PubMed  Google Scholar 

  • Sakakibara, R. et al. Questionnaire-based assessment of pelvic organ dysfunction in Parkinson's disease. Auton. Neurosci. 92, 76–85 (2001).

    CAS  PubMed  Google Scholar 

  • Edwards, L., Quigley, E. M., Hofman, R. & Pfeiffer, R. F. Gastrointestinal symptoms in Parkinson disease: 18-month follow-up study. Mov. Disord. 8, 83–86 (1993).

    CAS  PubMed  Google Scholar 

  • Jost, W. H., Jung, G. & Schimrigk, K. Colonic transit time in nonidiopathic Parkinson's syndrome. Eur. Neurol. 34, 329–331 (1994).

    CAS  PubMed  Google Scholar