nature.com

Phosphorylation of human PRP28 by SRPK2 is required for integration of the U4/U6-U5 tri-snRNP into the spliceosome - Nature Structural & Molecular Biology

  • ️Lührmann, Reinhard
  • ️Sun Apr 20 2008
  • Jurica, M.S. & Moore, M.J. Pre-mRNA splicing: awash in a sea of proteins. Mol. Cell 12, 5–14 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Will, C.L. & Lührmann, R. Spliceosome structure and function. in The RNA World 3rd edn (eds. Gesteland, R.F., Cech, T.R. & Atkins, J.F.) 369–400 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2006).

    Google Scholar 

  • Staley, J.P. & Guthrie, C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92, 315–326 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Fu, X.D. The superfamily of arginine/serine-rich splicing factors. RNA 1, 663–680 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graveley, B.R. Sorting out the complexity of SR protein functions. RNA 6, 1197–1211 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanford, J.R., Ellis, J. & Cáceres, J.F. Multiple roles of arginine/serine-rich splicing factors in RNA processing. Biochem. Soc. Trans. 33, 443–446 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Black, D.L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Wu, J.Y. & Maniatis, T. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75, 1061–1070 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Shen, H. & Green, M.R. A pathway of sequential arginine-serine-rich domain-splicing signal interactions during mammalian spliceosome assembly. Mol. Cell 16, 363–373 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Shen, H. & Green, M.R. RS domain-splicing signal interactions in splicing of U12-type and U2-type introns. Nat. Struct. Mol. Biol. 14, 597–603 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Teigelkamp, S., Mundt, C., Achsel, T., Will, C.L. & Lührmann, R. The human U5 snRNP-specific 100-kD protein is an RS domain-containing, putative RNA helicase with significant homology to the yeast splicing factor Prp28p. RNA 3, 1313–1326 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woppmann, A. et al. Identification of an snRNP-associated kinase activity that phosphorylates arginine/serine rich domains typical of splicing factors. Nucleic Acids Res. 21, 2815–2822 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staley, J.P. & Guthrie, C. An RNA switch at the 5′ splice site requires ATP and the DEAD box protein Prp28p. Mol. Cell 3, 55–64 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Will, C.L. et al. Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein. EMBO J. 21, 4978–4988 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamison, S.F. et al. U1 snRNP-ASF/SF2 interaction and 5′ splice site recognition: characterization of required elements. Nucleic Acids Res. 23, 3260–3267 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohtz, J.D. et al. Protein-protein interactions and 5′-splice-site recognition in mammalian mRNA precursors. Nature 368, 119–124 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Eperon, I.C. et al. Selection of alternative 5′ splice sites: role of U1 snRNP and models for the antagonistic effects of SF2/ASF and hnRNP A1. Mol. Cell. Biol. 20, 8303–8318 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roscigno, R.F. & Garcia-Blanco, M.A. SR proteins escort the U4/U6·U5 tri-snRNP to the spliceosome. RNA 1, 692–706 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova, O.V., Makarov, E.M. & Lührmann, R. The 65 and 110 kDa SR-related proteins of the U4/U6·U5 tri-snRNP are essential for the assembly of mature spliceosomes. EMBO J. 20, 2553–2563 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mermoud, J.E., Cohen, P. & Lamond, A.I. Ser/Thr-specific protein phosphatases are required for both catalytic steps of pre-mRNA splicing. Nucleic Acids Res. 20, 5263–5269 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mermoud, J.E., Cohen, P.T. & Lamond, A.I. Regulation of mammalian spliceosome assembly by a protein phosphorylation mechanism. EMBO J. 13, 5679–5688 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manley, J.L. & Tacke, R. SR proteins and splicing control. Genes Dev. 10, 1569–1579 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Xiao, S.H. & Manley, J.L. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev. 11, 334–344 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Shi, Y., Reddy, B. & Manley, J.L. PP1/PP2A phosphatases are required for the second step of Pre-mRNA splicing and target specific snRNP proteins. Mol. Cell 23, 819–829 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Colwill, K. et al. The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. EMBO J. 15, 265–275 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi, F. et al. Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 381, 80–82 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Gui, J.F., Lane, W.S. & Fu, X.D. A serine kinase regulates intracellular localization of splicing factors in the cell cycle. Nature 369, 678–682 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Kuroyanagi, N., Onogi, H., Wakabayashi, T. & Hagiwara, M. Novel SR-protein-specific kinase, SRPK2, disassembles nuclear speckles. Biochem. Biophys. Res. Commun. 242, 357–364 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Wang, H.Y. et al. SRPK2: a differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells. J. Cell Biol. 140, 737–750 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa, O. et al. Centronuclear myopathy in mice lacking a novel muscle-specific protein kinase transcriptionally regulated by MEF2. Genes Dev. 19, 2066–2077 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fetzer, S., Lauber, J., Will, C.L. & Lührmann, R. The [U4/U6·U5] tri-snRNP-specific 27K protein is a novel SR protein that can be phosphorylated by the snRNP-associated protein kinase. RNA 3, 344–355 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lemm, I. et al. Ongoing U snRNP biogenesis is required for the integrity of Cajal bodies. Mol. Biol. Cell 17, 3221–3231 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, K.A. & Green, M.R. Small-scale preparation of extracts from radiolabeled cells efficient in pre-mRNA splicing. Methods Enzymol. 181, 20–30 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Makarova, O.V., Makarov, E.M., Liu, S., Vornlocher, H.-P. & Lührmann, R. Protein 61K, encoded by a gene (PRPF31) linked to autosomal dominant retinitis pigmentosa, is required for U4/U6·U5 tri-snRNP formation and pre-mRNA splicing. EMBO J. 21, 1148–1157 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaffert, N., Hossbach, M., Heintzmann, R., Achsel, T. & Lührmann, R. RNAi knockdown of hPrp31 leads to an accumulation of U4/U6 di-snRNPs in Cajal bodies. EMBO J. 23, 3000–3009 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laggerbauer, B. et al. The human U5 snRNP 52K protein (CD2BP2) interacts with U5-102K (hPrp6), a U4/U6·U5 tri-snRNP bridging protein, but dissociates upon tri-snRNP formation. RNA 11, 598–608 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daub, H. et al. Identification of SRPK1 and SRPK2 as the major cellular protein kinases phosphorylating hepatitis B virus core protein. J. Virol. 76, 8124–8137 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamachi, M. et al. Human autoimmune sera as molecular probes for the identification of an autoantigen kinase signaling pathway. J. Exp. Med. 196, 1213–1225 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woppmann, A., Patschinsky, T., Bringmann, P., Godt, F. & Lührmann, R. Characterisation of human and murine snRNP proteins by two-dimensional gel electrophoresis and phosphopeptide analysis of U1-specific 70K protein variants. Nucleic Acids Res. 18, 4427–4438 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoyanov, A.V. & Righetti, P.G. Dynamics of protein isoelectric focusing in immobilized pH gradient gels. Electrophoresis 17, 1313–1318 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Liu, S., Rauhut, R., Vornlocher, H.P. & Lührmann, R. The network of protein-protein interactions within the human U4/U6·U5 tri-snRNP. RNA 12, 1418–1430 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strauss, E.J. & Guthrie, C. A cold-sensitive mRNA splicing mutant is a member of the RNA helicase gene family. Genes Dev. 5, 629–641 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Strauss, E.J. & Guthrie, C. PRP28, a 'DEAD-box' protein, is required for the first step of mRNA splicing in vitro. Nucleic Acids Res. 22, 3187–3193 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tazi, J. et al. Thiophosphorylation of U1–70K protein inhibits pre-mRNA splicing. Nature 363, 283–286 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Bessonov, S. et al. Isolation of an active step I spliceosome and composition of its RNP core. Nature advance online publication, doi:10.1038/nature06842 (5 March 2008).

  • Elbashir, S.M., Harborth, J., Weber, K. & Tuschl, T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26, 199–213 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Lerner, E.A., Lerner, M.R., Janeway, C.A. Jr & Steitz, J.A. Monoclonal antibodies to nucleic acid-containing cellular constituents: probes for molecular biology and autoimmune disease. Proc. Natl. Acad. Sci. USA 78, 2737–2741 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kastner, B. & Lührmann, R. Purification of U small nuclear ribonucleoprotein particles. Methods Mol. Biol. 118, 289–298 (1999).

    CAS  PubMed  Google Scholar 

  • Shin, C. & Manley, J.L. The SR protein SRp38 represses splicing in M phase cells. Cell 111, 407–417 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Dignani, J.D., Lebovitz, R.M. & Roeder, R.G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  Google Scholar 

  • Nikolakaki, E. et al. Cloning and characterization of an alternatively spliced form of SR protein kinase 1 that interacts specifically with scaffold attachment factor-B. J. Biol. Chem. 276, 40175–40182 (2001).

    Article  CAS  PubMed  Google Scholar