nature.com

Reconstitution of both steps of Saccharomyces cerevisiae splicing with purified spliceosomal components - Nature Structural & Molecular Biology

  • ️Lührmann, Reinhard
  • ️Sun Nov 22 2009

References

  1. Will, C.L. & Lührmann, R. Spliceosome structure and function. in RNA World (eds. Gesteland, R.F., Cech, T.R. & Atkins, J.F.) 369–400 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2006).

  2. Staley, J.P. & Guthrie, C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92, 315–326 (1998).

    Article  CAS  Google Scholar 

  3. Nilsen, T.W. RNA-RNA interactions in nuclear pre-mRNA splicing. in RNA Structure and Function (eds. Grundber-Manago, M., & Simons, R.W.) 279–307 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1998).

  4. Nilsen, T.W. The spliceosome: the most complex macromolecular machine in the cell? Bioessays 25, 1147–1149 (2003).

    Article  Google Scholar 

  5. Pyle, A.M. Translocation and unwinding mechanisms of RNA and DNA helicases. Annu. Rev. Biophys. 37, 317–336 (2008).

    Article  CAS  Google Scholar 

  6. Schwer, B. & Guthrie, C. PRP16 is an RNA-dependent ATPase that interacts transiently with the spliceosome. Nature 349, 494–499 (1991).

    Article  CAS  Google Scholar 

  7. Teigelkamp, S., McGarvey, M., Plumpton, M. & Beggs, J.D. The splicing factor PRP2, a putative RNA helicase, interacts directly with pre-mRNA. EMBO J. 13, 888–897 (1994).

    Article  CAS  Google Scholar 

  8. King, D.S. & Beggs, J.D. Interactions of PRP2 protein with pre-mRNA splicing complexes in Saccharomyces cerevisiae. Nucleic Acids Res. 18, 6559–6564 (1990).

    Article  CAS  Google Scholar 

  9. Schwer, B. & Gross, C.H. Prp22, a DExH-box RNA helicase, plays two distinct roles in yeast pre-mRNA splicing. EMBO J. 17, 2086–2094 (1998).

    Article  CAS  Google Scholar 

  10. Kim, S.H. & Lin, R.J. Spliceosome activation by PRP2 ATPase prior to the first transesterification reaction of pre-mRNA splicing. Mol. Cell. Biol. 16, 6810–6819 (1996).

    Article  CAS  Google Scholar 

  11. Fabrizio, P. et al. The evolutionarily conserved core design of the catalytic activation step of the yeast spliceosome. Mol. Cell (in the press).

  12. Burgess, S.M. & Guthrie, C. A mechanism to enhance mRNA splicing fidelity: the RNA-dependent ATPase Prp16 governs usage of a discard pathway for aberrant lariat intermediates. Cell 73, 1377–1391 (1993).

    Article  CAS  Google Scholar 

  13. Mefford, M.A. & Staley, J.P. Evidence that U2/U6 helix I promotes both catalytic steps of pre-mRNA splicing and rearranges in between these steps. RNA 15, 1386–1397 (2009).

    Article  CAS  Google Scholar 

  14. Vijayraghavan, U. & Abelson, J. PRP18, a protein required for the second reaction in pre-mRNA splicing. Mol. Cell. Biol. 10, 324–332 (1990).

    Article  CAS  Google Scholar 

  15. Horowitz, D.S. & Abelson, J. Stages in the second reaction of pre-mRNA splicing: the final step is ATP independent. Genes Dev. 7, 320–329 (1993).

    Article  CAS  Google Scholar 

  16. Umen, J.G. & Guthrie, C. The second catalytic step of pre-mRNA splicing. RNA 1, 869–885 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ansari, A. & Schwer, B. SLU7 and a novel activity, SSF1, act during the PRP16-dependent step of yeast pre-mRNA splicing. EMBO J. 14, 4001–4009 (1995).

    Article  CAS  Google Scholar 

  18. Brys, A. & Schwer, B. Requirement for SLU7 in yeast pre-mRNA splicing is dictated by the distance between the branchpoint and the 3′ splice site. RNA 2, 707–717 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. James, S.A., Turner, W. & Schwer, B. How Slu7 and Prp18 cooperate in the second step of yeast pre-mRNA splicing. RNA 8, 1068–1077 (2002).

    Article  CAS  Google Scholar 

  20. Wahl, M.C., Will, C.L. & Lührmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009).

    Article  CAS  Google Scholar 

  21. Tseng, C.K. & Cheng, S.C. Both catalytic steps of nuclear pre-mRNA splicing are reversible. Science 320, 1782–1784 (2008).

    Article  CAS  Google Scholar 

  22. Deckert, J. et al. Protein composition and electron microscopy structure of affinity-purified human spliceosomal B complexes isolated under physiological conditions. Mol. Cell. Biol. 26, 5528–5543 (2006).

    Article  CAS  Google Scholar 

  23. Bessonov, S., Anokhina, M., Will, C.L., Urlaub, H. & Lührmann, R. Isolation of an active step I spliceosome and composition of its RNP core. Nature 452, 846–850 (2008).

    Article  CAS  Google Scholar 

  24. Makarov, E.M. et al. Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science 298, 2205–2208 (2002).

    Article  CAS  Google Scholar 

  25. Chan, S.P., Kao, D.I., Tsai, W.Y. & Cheng, S.C. The Prp19p-associated complex in spliceosome activation. Science 302, 279–282 (2003).

    Article  CAS  Google Scholar 

  26. Roy, J., Kim, K., Maddock, J.R., Anthony, J.G. & Woolford, J.L. Jr. The final stages of spliceosome maturation require Spp2p that can interact with the DEAH box protein Prp2p and promote step 1 of splicing. RNA 1, 375–390 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, Y.C., Chen, H.C., Wu, N.Y. & Cheng, S.C. A novel splicing factor, Yju2, is associated with NTC and acts after Prp2 in promoting the first catalytic reaction of pre-mRNA splicing. Mol. Cell. Biol. 27, 5403–5413 (2007).

    Article  CAS  Google Scholar 

  28. Sapra, A.K., Khandelia, P. & Vijayraghavan, U. The splicing factor Prp17 interacts with the U2, U5 and U6 snRNPs and associates with the spliceosome pre- and post-catalysis. Biochem. J. 416, 365–374 (2008).

    Article  CAS  Google Scholar 

  29. Ohi, M.D. et al. Proteomics analysis reveals stable multiprotein complexes in both fission and budding yeasts containing Myb-related Cdc5p/Cef1p, novel pre-mRNA splicing factors, and snRNAs. Mol. Cell. Biol. 22, 2011–2024 (2002).

    Article  CAS  Google Scholar 

  30. Burkhard, P., Stetefeld, J. & Strelkov, S.V. Coiled coils: a highly versatile protein folding motif. Trends Cell Biol. 11, 82–88 (2001).

    Article  CAS  Google Scholar 

  31. Farias, S.T. & Bonato, M.C. Preferred amino acids and thermostability. Genet. Mol. Res. 2, 383–393 (2003).

    CAS  PubMed  Google Scholar 

  32. Farias, S.T., van der Linden, M.G., Rego, T.G., Araujo, D.A. & Bonato, M.C. Thermo-search: lifestyle and thermostability analysis. In Silico Biol. 4, 377–380 (2004).

    CAS  PubMed  Google Scholar 

  33. Sander, B., Golas, M.M. & Stark, H. Corrim-based alignment for improved speed in single-particle image processing. J. Struct. Biol. 143, 219–228 (2003).

    Article  CAS  Google Scholar 

  34. van Heel, M. & Frank, J. Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6, 187–194 (1981).

    CAS  PubMed  Google Scholar 

  35. Chiu, Y.F. et al. Cwc25 is a novel splicing factor required after Prp2 and Yju2 to facilitate the first catalytic reaction. Mol. Cell. Biol. 29, 5671–5678 (2009).

    Article  CAS  Google Scholar 

  36. Gozani, O., Potashkin, J. & Reed, R. A potential role for U2AF-SAP 155 interactions in recruiting U2 snRNP to the branch site. Mol. Cell. Biol. 18, 4752–4760 (1998).

    Article  CAS  Google Scholar 

  37. Smith, D.J., Query, C.C. & Konarska, M.M. trans-splicing to spliceosomal U2 snRNA suggests disruption of branch site-U2 pairing during pre-mRNA splicing. Mol. Cell 26, 883–890 (2007).

    Article  CAS  Google Scholar 

  38. Yean, S.L. & Lin, R.J. U4 small nuclear RNA dissociates from a yeast spliceosome and does not participate in the subsequent splicing reaction. Mol. Cell. Biol. 11, 5571–5577 (1991).

    Article  CAS  Google Scholar 

  39. Fabrizio, P., McPheeters, D.S. & Abelson, J. In vitro assembly of yeast U6 snRNP: a functional assay. Genes Dev. 3, 2137–2150 (1989).

    Article  CAS  Google Scholar 

  40. Kastner, B. et al. GraFix: sample preparation for single-particle electron cryomicroscopy. Nat. Methods 5, 53–55 (2008).

    Article  CAS  Google Scholar 

  41. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).

    Article  CAS  Google Scholar 

  42. Hu, Q. et al. The Orbitrap: a new mass spectrometer. J. Mass Spectrom. 40, 430–443 (2005).

    Article  CAS  Google Scholar 

  43. Studier, F.W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    Article  CAS  Google Scholar 

Download references