nature.com

The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC - Nature Structural & Molecular Biology

  • ️Sonenberg, Nahum
  • ️Tue Jun 05 2012
  • Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabian, M.R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010).

    CAS  PubMed  Google Scholar 

  • Eulalio, A., Huntzinger, E. & Izaurralde, E. Getting to the root of miRNA-mediated gene silencing. Cell 132, 9–14 (2008).

    CAS  PubMed  Google Scholar 

  • Sonenberg, N. & Hinnebusch, A.G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, B., Yanez, A. & Novina, C.D. MicroRNA-repressed mRNAs contain 40S but not 60S components. Proc. Natl. Acad. Sci. USA 105, 5343–5348 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Humphreys, D.T., Westman, B.J., Martin, D.I. & Preiss, T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc. Natl. Acad. Sci. USA 102, 16961–16966 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thermann, R. & Hentze, M.W. Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature 447, 875–878 (2007).

    CAS  PubMed  Google Scholar 

  • Mathonnet, G. et al. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 317, 1764–1767 (2007).

    CAS  PubMed  Google Scholar 

  • Pillai, R.S. et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309, 1573–1576 (2005).

    CAS  PubMed  Google Scholar 

  • Nottrott, S., Simard, M.J. & Richter, J.D. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat. Struct. Mol. Biol. 13, 1108–1114 (2006).

    CAS  PubMed  Google Scholar 

  • Petersen, C.P., Bordeleau, M.E., Pelletier, J. & Sharp, P.A. Short RNAs repress translation after initiation in mammalian cells. Mol. Cell 21, 533–542 (2006).

    CAS  PubMed  Google Scholar 

  • Olsen, P.H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680 (1999).

    CAS  PubMed  Google Scholar 

  • Maroney, P.A., Yu, Y., Fisher, J. & Nilsen, T.W. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat. Struct. Mol. Biol. 13, 1102–1107 (2006).

    CAS  PubMed  Google Scholar 

  • Wu, L., Fan, J. & Belasco, J.G. MicroRNAs direct rapid deadenylation of mRNA. Proc. Natl. Acad. Sci. USA 103, 4034–4039 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, C.Y., Zheng, D., Xia, Z. & Shyu, A.B. Ago-TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps. Nat. Struct. Mol. Biol. 16, 1160–1166 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giraldez, A.J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006).The first demonstration of miRNA-mediated deadenylation in any organism.

    CAS  PubMed  Google Scholar 

  • Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 20, 1885–1898 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rehwinkel, J., Behm-Ansmant, I., Gatfield, D. & Izaurralde, E. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11, 1640–1647 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  PubMed  Google Scholar 

  • Song, J.J., Smith, S.K., Hannon, G.J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–1437 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Schmitter, D. et al. Effects of Dicer and Argonaute down-regulation on mRNA levels in human HEK293 cells. Nucleic Acids Res. 34, 4801–4815 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pillai, R.S., Artus, C.G. & Filipowicz, W. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA 10, 1518–1525 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eulalio, A., Huntzinger, E. & Izaurralde, E. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat. Struct. Mol. Biol. 15, 346–353 (2008).

    CAS  PubMed  Google Scholar 

  • Yao, B., Li, S., Lian, S.L., Fritzler, M.J. & Chan, E.K. Mapping of Ago2–GW182 functional interactions. Methods Mol. Biol. 725, 45–62 (2011).

    CAS  PubMed  Google Scholar 

  • Till, S. et al. A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nat. Struct. Mol. Biol. 14, 897–903 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Fabian, M.R. et al. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol. Cell 35, 868–880 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takimoto, K., Wakiyama, M. & Yokoyama, S. Mammalian GW182 contains multiple Argonaute-binding sites and functions in microRNA-mediated translational repression. RNA 15, 1078–1089 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eulalio, A., Tritschler, F. & Izaurralde, E. The GW182 protein family in animal cells: new insights into domains required for miRNA-mediated gene silencing. RNA 15, 1433–1442 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Shami, M. et al. Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes Dev. 21, 2539–2544 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lian, S.L. et al. The C-terminal half of human Ago2 binds to multiple GW-rich regions of GW182 and requires GW182 to mediate silencing. RNA 15, 804–813 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chekulaeva, M. et al. miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat. Struct. Mol. Biol. 18, 1218–1226 (2011).References 31, 40 and 45 report how GW182 recruits the deadenylation machineries to effect miRNA-mediated silencing.

    CAS  PubMed  Google Scholar 

  • Chekulaeva, M., Parker, R. & Filipowicz, W. The GW/WG repeats of Drosophila GW182 function as effector motifs for miRNA-mediated repression. Nucleic Acids Res. 38, 6673–6683 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eulalio, A. et al. The RRM domain in GW182 proteins contributes to miRNA-mediated gene silencing. Nucleic Acids Res. 37, 2974–2983 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zipprich, J.T., Bhattacharyya, S., Mathys, H. & Filipowicz, W. Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repression. RNA 15, 781–793 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chekulaeva, M., Filipowicz, W. & Parker, R. Multiple independent domains of dGW182 function in miRNA-mediated repression in Drosophila. RNA 15, 794–803 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eulalio, A., Helms, S., Fritzsch, C., Fauser, M. & Izaurralde, E. A C-terminal silencing domain in GW182 is essential for miRNA function. RNA 15, 1067–1077 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mishima, Y. et al. Translational inhibition by deadenylation-independent mechanisms is central to microRNA-mediated silencing in zebrafish. Proc. Natl. Acad. Sci. USA 109, 1104–1109 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huntzinger, E., Braun, J.E., Heimstadt, S., Zekri, L. & Izaurralde, E. Two PABPC1-binding sites in GW182 proteins promote miRNA-mediated gene silencing. EMBO J. 29, 4146–4160 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zekri, L., Huntzinger, E., Heimstadt, S. & Izaurralde, E. The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of microRNA targets and is required for target release. Mol. Cell. Biol. 29, 6220–6231 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fabian, M.R. et al. miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT. Nat. Struct. Mol. Biol. 18, 1211–1217 (2011).

    CAS  PubMed  Google Scholar 

  • Jinek, M., Fabian, M.R., Coyle, S.M., Sonenberg, N. & Doudna, J.A. Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation. Nat. Struct. Mol. Biol. 17, 238–240 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, L., Spencer, A., Morita, K. & Han, M. The developmental timing regulator AIN-1 interacts with miRISCs and may target the argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. Mol. Cell 19, 437–447 (2005).

    CAS  PubMed  Google Scholar 

  • Sen, G.L. & Blau, H.M. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat. Cell Biol. 7, 633–636 (2005).

    CAS  PubMed  Google Scholar 

  • Liu, J. et al. A role for the P-body component GW182 in microRNA function. Nat. Cell Biol. 7, 1261–1266 (2005).

    PubMed  PubMed Central  Google Scholar 

  • Braun, J.E., Huntzinger, E., Fauser, M. & Izaurralde, E. GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol. Cell 44, 120–133 (2011).

    CAS  PubMed  Google Scholar 

  • Kuzuoglu-Oztürk, D., Huntzinger, E., Schmidt, S. & Izaurralde, E. The Caenorhabditis elegans GW182 protein AIN-1 interacts with PAB-1 and subunits of the PAN2–PAN3 and CCR4-NOT deadenylase complexes. Nucleic Acids Res. 10.1093/nar/gks218 (2012).

  • Derry, M.C., Yanagiya, A., Martineau, Y. & Sonenberg, N. Regulation of poly(A)-binding protein through PABP-interacting proteins. Cold Spring Harb. Symp. Quant. Biol. 71, 537–543 (2006).

    CAS  PubMed  Google Scholar 

  • Siddiqui, N., Osborne, M.J., Gallie, D.R. & Gehring, K. Solution structure of the PABC domain from wheat poly (A)-binding protein: an insight into RNA metabolic and translational control in plants. Biochemistry 46, 4221–4231 (2007).

    CAS  PubMed  Google Scholar 

  • Mauxion, F., Chen, C.Y., Seraphin, B. & Shyu, A.B. BTG/TOB factors impact deadenylases. Trends Biochem. Sci. 34, 640–647 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kozlov, G. et al. Structure and function of the C-terminal PABC domain of human poly(A)-binding protein. Proc. Natl. Acad. Sci. USA 98, 4409–4413 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kozlov, G., Safaee, N., Rosenauer, A. & Gehring, K. Structural basis of binding of P-body-associated proteins GW182 and ataxin-2 by the Mlle domain of poly(A)-binding protein. J. Biol. Chem. 285, 13599–13606 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L. et al. Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol. Cell 28, 598–613 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walters, R.W., Bradrick, S.S. & Gromeier, M. Poly(A)-binding protein modulates mRNA susceptibility to cap-dependent miRNA-mediated repression. RNA 16, 239–250 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukaya, T. & Tomari, Y. PABP is not essential for microRNA-mediated translational repression and deadenylation in vitro. EMBO J. 30, 4998–5009 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wakiyama, M., Takimoto, K., Ohara, O. & Yokoyama, S. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev. 21, 1857–1862 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, E. et al. Pervasive and cooperative deadenylation of 3′UTRs by embryonic microRNA families. Mol. Cell 40, 558–570 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piao, X., Zhang, X., Wu, L. & Belasco, J.G. CCR4-NOT deadenylates mRNA associated with RNA-induced silencing complexes in human cells. Mol. Cell. Biol. 30, 1486–1494 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su, H. et al. Mammalian hyperplastic discs homolog EDD regulates miRNA-mediated gene silencing. Mol. Cell 43, 97–109 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coller, J. & Parker, R. General translational repression by activators of mRNA decapping. Cell 122, 875–886 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu, C.Y. & Rana, T.M. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol. 4, e210 (2006).

    PubMed  PubMed Central  Google Scholar 

  • Lee, R.C., Feinbaum, R.L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    CAS  PubMed  Google Scholar 

  • Bagga, S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122, 553–563 (2005).

    CAS  PubMed  Google Scholar 

  • Lim, L.P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    CAS  PubMed  Google Scholar 

  • Bhattacharyya, S.N., Habermacher, R., Martine, U., Closs, E.I. & Filipowicz, W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 1111–1124 (2006).The first demonstration that miRNA-mediated gene silencing is derepressed by an RNA-binding protein.

    CAS  PubMed  Google Scholar 

  • Ding, X.C. & Grosshans, H. Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins. EMBO J. 28, 213–222 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eulalio, A. et al. Deadenylation is a widespread effect of miRNA regulation. RNA 15, 21–32 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    CAS  PubMed  Google Scholar 

  • Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y. et al. Identifying targets of miR-143 using a SILAC-based proteomic approach. Mol. Biosyst. 6, 1873–1882 (2010).

    CAS  PubMed  Google Scholar 

  • Guo, H., Ingolia, N.T., Weissman, J.S. & Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrickson, D.G. et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol. 7, e1000238 (2009).

    PubMed  PubMed Central  Google Scholar 

  • Banerjee, S., Neveu, P. & Kosik, K.S. A coordinated local translational control point at the synapse involving relief from silencing and MOV10 degradation. Neuron 64, 871–884 (2009).

    CAS  PubMed  Google Scholar 

  • Zdanowicz, A. et al. Drosophila miR2 primarily targets the m7GpppN cap structure for translational repression. Mol. Cell 35, 881–888 (2009).

    CAS  PubMed  Google Scholar 

  • Djuranovic, S., Nahvi, A. & Green, R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336, 237–240 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bazzini, A.A., Lee, M.T. & Giraldez, A.J. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012).Together with reference 74, the first in vivo demonstration that miRNA-mediated translational repression precedes mRNA decay.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beilharz, T.H. & Preiss, T. Widespread use of poly(A) tail length control to accentuate expression of the yeast transcriptome. RNA 13, 982–997 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Djuranovic, S. et al. Allosteric regulation of Argonaute proteins by miRNAs. Nat. Struct. Mol. Biol. 17, 144–150 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiriakidou, M. et al. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129, 1141–1151 (2007).

    CAS  PubMed  Google Scholar 

  • Djuranovic, S., Nahvi, A. & Green, R. A parsimonious model for gene regulation by miRNAs. Science 331, 550–553 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kinch, L.N. & Grishin, N.V. The human Ago2 MC region does not contain an eIF4E-like mRNA cap binding motif. Biol. Direct 4, 2 (2009).

    PubMed  PubMed Central  Google Scholar 

  • Frank, F. et al. Structural analysis of 5′-mRNA-cap interactions with the human AGO2 MID domain. EMBO Rep. 12, 415–420 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke, A., Prigge, A. & Wickens, M. Translational repression by deadenylases. J. Biol. Chem. 285, 28506–28513 (2010).Shows that the CCR4–NOT complex represses cap-dependent translation in a deadenylation-independent manner.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glorian, V. et al. HuR-dependent loading of miRNA RISC to the mRNA encoding the Ras-related small GTPase RhoB controls its translation during UV-induced apoptosis. Cell Death Differ. 18, 1692–1701 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, H.H. et al. HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev. 23, 1743–1748 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kundu, P., Fabian, M.R., Sonenberg, N., Bhattacharyya, S. & Filipowicz, W. HuR protein attenuates miRNA-mediated repression by promoting miRISC dissociation from the target RNA. Nucleic Acids Res. 10.1093/nar/gks148 (2012).

  • Meisner, N.C. & Filipowicz, W. Properties of the regulatory RNA-binding protein HuR and its role in controlling miRNA repression. Adv. Exp. Med. Biol. 700, 106–123 (2011).

    PubMed  Google Scholar 

  • Tominaga, K. et al. Competitive regulation of nucleolin expression by HuR and miR-494. Mol. Cell. Biol. 31, 4219–4231 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young, L.E., Moore, A.E., Sokol, L., Meisner-Kober, N. & Dixon, D.A. The mRNA stability factor HuR inhibits microRNA-16 Targeting of COX-2. Mol. Cancer Res. 10, 167–180 (2012).

    CAS  PubMed  Google Scholar 

  • Mishima, Y. et al. Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430. Curr. Biol. 16, 2135–2142 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kedde, M. et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131, 1273–1286 (2007).

    CAS  PubMed  Google Scholar 

  • Nolde, M.J., Saka, N., Reinert, K.L. & Slack, F.J. The Caenorhabditis elegans pumilio homolog, puf-9, is required for the 3′UTR-mediated repression of the let-7 microRNA target gene, hbl-1. Dev. Biol. 305, 551–563 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kedde, M. et al. A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility. Nat. Cell Biol. 12, 1014–1020 (2010).

    CAS  PubMed  Google Scholar 

  • Henkin, T.M. Riboswitch RNAs: using RNA to sense cellular metabolism. Genes Dev. 22, 3383–3390 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roth, A. & Breaker, R.R. The structural and functional diversity of metabolite-binding riboswitches. Annu. Rev. Biochem. 78, 305–334 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galgano, A. et al. Comparative analysis of mRNA targets for human PUF-family proteins suggests extensive interaction with the miRNA regulatory system. PLoS ONE 3, e3164 (2008).

    PubMed  PubMed Central  Google Scholar 

  • Goldstrohm, A.C., Hook, B.A., Seay, D.J. & Wickens, M. PUF proteins bind Pop2p to regulate messenger RNAs. Nat. Struct. Mol. Biol. 13, 533–539 (2006).

    CAS  PubMed  Google Scholar 

  • Mukherjee, N. et al. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol. Cell 43, 327–339 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lebedeva, S. et al. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol. Cell 43, 340–352 (2011).

    CAS  PubMed  Google Scholar 

  • Yeap, B.B. et al. Novel binding of HuR and poly(C)-binding protein to a conserved UC-rich motif within the 3′-untranslated region of the androgen receptor messenger RNA. J. Biol. Chem. 277, 27183–27192 (2002).

    CAS  PubMed  Google Scholar 

  • Lastres-Becker, I., Rub, U. & Auburger, G. Spinocerebellar ataxia 2 (SCA2). Cerebellum 7, 115–124 (2008).

    CAS  PubMed  Google Scholar 

  • McCann, C. et al. The Ataxin-2 protein is required for microRNA function and synapse-specific long-term olfactory habituation. Proc. Natl. Acad. Sci. USA 108, E655–E662 (2011).

    PubMed  PubMed Central  Google Scholar 

  • Moretti, F., Kaiser, C., Zdanowicz-Specht, A. & Hentze, M.W. PABP and the poly(A) tail augment microRNA repression by facilitated miRISC binding. Nat. Struct. Mol. Biol. published online, doi:10.1038/nsmb.2309 (27 May 2012).