nature.com

Nucleosomes facilitate their own invasion - Nature Structural & Molecular Biology

  • ️Widom, Jonathan
  • ️Sun Jul 18 2004

References

  1. Richmond, T.J. & Davey, C.A. The structure of DNA in the nucleosome core. Nature 423, 145–150 (2003).

    Article  CAS  Google Scholar 

  2. Fragoso, G., John, S., Roberts, M.S. & Hager, G.L. Nucleosome positioning on the MMTV LTR results from the frequency-biased occupancy of multiple frames. Genes Dev. 9, 1933–1947 (1995).

    Article  CAS  Google Scholar 

  3. Felsenfeld, G. Chromatin unfolds. Cell 86, 13–19 (1996).

    Article  CAS  Google Scholar 

  4. Kornberg, R.D. & Lorch, Y. Chromatin-modifying and -remodeling complexes. Curr. Opin. Genet. Dev. 9, 148–151 (1999).

    Article  CAS  Google Scholar 

  5. Ahmad, K. & Henikoff, S. Epigenetic consequences of nucleosome dynamics. Cell 111, 281–284 (2002).

    Article  CAS  Google Scholar 

  6. Felsenfeld, G. & Groudine, M. Controlling the double helix. Nature 421, 448–453 (2003).

    Article  Google Scholar 

  7. Kornberg, R.D. & Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285–294 (1999).

    Article  CAS  Google Scholar 

  8. Narlikar, G.J., Fan, H.Y. & Kingston, R.E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).

    Article  CAS  Google Scholar 

  9. Fan, H.-Y., He, X., Kingston, R.E. & Narlikar, G.J. Distinct strategies to make nucleosomal DNA accessible. Mol. Cell 11, 1311–1322 (2003).

    Article  CAS  Google Scholar 

  10. Kassabov, S.R., Zhang, B., Persinger, J. & Bartholomew, B. SWI/SNF unwraps, slides, and rewraps the nucleosome. Mol. Cell 11, 391–403 (2003).

    Article  CAS  Google Scholar 

  11. Längst, G. & Becker, P.B. ISWI induces nucleosome sliding on nicked DNA. Mol. Cell 8, 1085–1092 (2001).

    Article  Google Scholar 

  12. Polach, K.J. & Widom, J. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J. Mol. Biol. 254, 130–149 (1995).

    Article  CAS  Google Scholar 

  13. Polach, K.J. & Widom, J. A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J. Mol. Biol. 258, 800–812 (1996).

    Article  CAS  Google Scholar 

  14. Felsenfeld, G. Quantitative approaches to problems of eukaryotic gene expression. Biophys. Chem. 100, 607–613 (2003).

    Article  CAS  Google Scholar 

  15. Miller, J.A. & Widom, J. Collaborative competition mechanism for gene activation in vivo. Mol. Cell. Biol. 23, 1623–1632 (2003).

    Article  CAS  Google Scholar 

  16. Lorch, Y., LaPointe, J.W. & Kornberg, R.D. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 49, 203–210 (1987).

    Article  CAS  Google Scholar 

  17. Taylor, I.C.A., Workman, J.L., Schuetz, T.J. & Kingston, R.E. Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA-binding domains. Genes Dev. 5, 1285–1298 (1991).

    Article  CAS  Google Scholar 

  18. Vettese-Dadey, M., Walter, P., Chen, H., Juan, L.-J. & Workman, J.L. Role of the histone amino termini in facilitated binding of a transcription factor, GAL4-AH, to nucleosome cores. Mol. Cell. Biol. 14, 970–981 (1994).

    Article  CAS  Google Scholar 

  19. Owen-Hughes, T. & Workman, J.L. Remodeling the chromatin structure of a nucleosome array by transcription factor-targeted trans-displacement of histones. EMBO J. 15, 4702–4712 (1996).

    Article  CAS  Google Scholar 

  20. Owen-Hughes, T., Utley, R.T., Cote, J., Peterson, C.L. & Workman, J.L. Persistent site-specific remodeling of a nucleosome array by transient action of the SWI/SNF complex. Science 273, 513–516 (1996).

    Article  CAS  Google Scholar 

  21. Ura, K., Hayes, J.J. & Wolffe, A.P. A positive role for nucleosome mobility in the transcriptional activity of chromatin templates: restriction by linker histones. EMBO J. 14, 3752–3765 (1995).

    Article  CAS  Google Scholar 

  22. Meersseman, G., Pennings, S. & Bradbury, E.M. Mobile nucleosomes—a general behavior. EMBO J. 11, 2951–2959 (1992).

    Article  CAS  Google Scholar 

  23. Anderson, J.D., Thåström, A. & Widom, J. Spontaneous access of proteins to buried nucleosomal DNA target sites occurs via a mechanism that is distinct from nucleosome translocation. Mol. Cell. Biol. 22, 7147–7157 (2002).

    Article  CAS  Google Scholar 

  24. Richmond, T.J. & Widom, J. Nucleosome and chromatin structure. In Chromatin Structure and Gene Expression: Frontiers in Molecular Biology 2/e (eds. Elgin, S. & Workman, J.L.) (Oxford Univ. Press, Oxford, 2000).

    Google Scholar 

  25. Whitehouse, I., Flaus, A., Havas, K. & Owen-Hughes, T. Mechanisms for ATP-dependent chromatin remodelling. Biochem. Soc. Trans. 28, 376–379 (2000).

    Article  CAS  Google Scholar 

  26. Varga-Weisz, P.D. & Becker, P.B. Chromatin-remodeling factors: machines that regulate? Curr. Biol. 10, 346–353 (1998).

    Article  CAS  Google Scholar 

  27. Clegg, R.M. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388 (1992).

    Article  CAS  Google Scholar 

  28. Ha, T. et al. Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419, 638–641 (2002).

    Article  CAS  Google Scholar 

  29. van Holde, K.E. Chromatin (Springer, New York, 1989).

    Book  Google Scholar 

  30. Manning, G.S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q. Rev. Biophys. 11, 179–246 (1978).

    Article  CAS  Google Scholar 

  31. Polach, K.J. & Widom, J. Restriction enzymes as probes of nucleosome stability. Methods Enzymol. 304, 278–298 (1999).

    Article  CAS  Google Scholar 

  32. Anderson, J.D. & Widom, J. Sequence- and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. J. Mol. Biol. 296, 979–987 (2000).

    Article  CAS  Google Scholar 

  33. Feynman, R.P., Leighton, R.B. & Sands, M. The Feynman Lectures on Physics (Addison-Wesley, Reading, Massachusetts, USA, 1963).

    Google Scholar 

  34. Peterson, C.L. & Logie, C. Recruitment of chromatin remodeling machines. J. Cell. Biochem. 78, 179–185 (2000).

    Article  CAS  Google Scholar 

  35. Lowary, P.T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).

    Article  CAS  Google Scholar 

  36. Dorigo, B., Schalch, T., Bystricky, K. & Richmond, T.J. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J. Mol. Biol. 327, 85–96 (2003).

    Article  CAS  Google Scholar 

  37. Luger, K., Rechsteiner, T.J. & Richmond, T.J. Preparation of nucleosome core particle from recombinant histones. Methods Enzymol. 304, 3–19 (1999).

    Article  CAS  Google Scholar 

  38. Little, J.W. et al. Cleavage of LexA repressor. Methods Enzymol. 244, 266–284 (1994).

    Article  CAS  Google Scholar 

  39. Thåström, A., Bingham, L.M. & Widom, J. Nucleosomal locations of dominant DNA sequence motifs for histone-DNA interactions and nucleosome positioning. J. Mol. Biol. 338, 695–709 (2004).

    Article  Google Scholar 

Download references