nature.com

A complex resistance locus in Solanum americanum recognizes a conserved Phytophthora effector - Nature Plants

  • ️Jones, Jonathan D. G.
  • ️Thu Feb 11 2021
  • World Food and Agriculture: Statistical Pocketbook 2019 (FAO, 2019).

  • Saville, A. et al. Fungicide sensitivity of U.S. genotypes of Phytophthora infestans to six oomycete-targeted compounds. Plant Dis. 99, 659–666 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Malcolmson, J. F. & Black, W. New R genes in Solanum demissum lindl. And their complementary races of Phytophthora infestans (Mont.) de Bary. Euphytica 15, 199–203 (1966).

    Article  Google Scholar 

  • Park, T.-H. et al. The late blight resistance locus Rpi-bib3 from Solanum bulbocastanum belongs to a major late blight R gene cluster on chromosome 4 of potato. Mol. Plant Microbe Interact. 18, 722–729 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Huang, S. et al. Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. Plant J. 42, 251–261 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Vossen, J. H. et al. The Solanum demissum R8 late blight resistance gene is an Sw-5 homologue that has been deployed worldwide in late blight resistant varieties. Theor. Appl. Genet. 129, 1785–1796 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, J. et al. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc. Natl Acad. Sci. USA 100, 9128–9133 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Vossen, E. A. G. et al. The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homologue conferring broad-spectrum late blight resistance in potato. Plant J. 44, 208–222 (2005).

    Article  PubMed  Google Scholar 

  • Pel, M. A. et al. Mapping and cloning of late blight resistance genes from Solanum venturii using an interspecific candidate gene approach. Mol. Plant Microbe Interact. 22, 601–615 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Foster, S. J. et al. Rpi-vnt1.1, a Tm-22 homologue from Solanum venturii, confers resistance to potato late blight. Mol. Plant Microbe Interact. 22, 589–600 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Jones, J. D. G., Vance, R. E. & Dangl, J. L. Intracellular innate immune surveillance devices in plants and animals. Science 354, aaf6395 (2016).

    Article  PubMed  Google Scholar 

  • Wu, C.-H. et al. NLR network mediates immunity to diverse plant pathogens. Proc. Natl Acad. Sci. USA 114, 8113–8118 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry, W. Phytophthora infestans: the plant (and R gene) destroyer. Mol. Plant Pathol. 9, 385–402 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones, J. D. G. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Rehmany, A. P. et al. Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell 17, 1839–1850 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vleeshouwers, V. G. A. A. et al. Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS ONE 3, e2875 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Haas, B. J. et al. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461, 393–398 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Armstrong, M. R. et al. An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proc. Natl Acad. Sci. USA 102, 7766–7771 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stam, R., Silva Arias, G. A. & Tellier, A. Subsets of NLR genes show differential signatures of adaptation during colonization of new habitats. New Phytol. 224, 367–379 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Van de Weyer, A.-L. et al. A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana. Cell 178, 1260–1272 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • McDowell, J. M. et al. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10, 1861–1874 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J. et al. Genetic variation and evolution of the Pi9 blast resistance locus in the AA genome Oryza species. J. Plant Biol. 54, 294–302 (2011).

    Article  Google Scholar 

  • Ellis, J. G., Lawrence, G. J., Luck, J. E. & Dodds, P. N. Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11, 495–506 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seeholzer, S. et al. Diversity at the Mla powdery mildew resistance locus from cultivated barley reveals sites of positive selection. Mol. Plant Microbe Interact. 23, 497–509 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Saur, I. M. et al. Multiple pairs of allelic MLA immune receptor-powdery mildew AVRA effectors argue for a direct recognition mechanism. eLife 8, 1957 (2019).

    Article  Google Scholar 

  • Anderson, C. et al. Genome analysis and avirulence gene cloning using a high-density RADseq linkage map of the flax rust fungus, Melampsora lini. BMC Genomics 17, 667 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jupe, F. et al. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J. 76, 530–544 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thilliez, G. J. A. et al. Pathogen enrichment sequencing (PenSeq) enables population genomic studies in oomycetes. New Phytol. 4, 903 (2018).

    Google Scholar 

  • Jouet, A. et al. Albugo candida race diversity, ploidy and host-associated microbes revealed using DNA sequence capture on diseased plants in the field. New Phytol. 93, 959 (2018).

    Google Scholar 

  • Witek, K. et al. Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing. Nat. Biotechnol. 34, 656–660 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Lin, X. et al. Identification of Avramr1 from Phytophthora infestans using long read and cDNA pathogen-enrichment sequencing (PenSeq). Mol. Plant Pathol. 21, 1502–1512 (2020).

  • Kamoun, S., van West, P., Vleeshouwers, V. G. A. A., de Groot, K. E. & Govers, F. Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell 10, 1413–1425 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grund, E., Tremousaygue, D. & Deslandes, L. Plant NLRs with integrated domains: unity makes strength. Plant Physiol. 179, 1227–1235 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Chen, X. et al. Identification and rapid mapping of a gene conferring broad-spectrum late blight resistance in the diploid potato species Solanum verrucosum through DNA capture technologies. Theor. Appl. Genet. 131, 1287–1297 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, X. et al. Genome sequence and analysis of the tuber crop potato. Nature 475, 189–195 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Wu, C.-H. et al. NRC4 gene cluster is not essential for bacterial flagellin-triggered immunity. Plant Physiol. 182, 455–459 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Adachi, H. et al. An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. eLife 8, 121 (2019).

    Article  Google Scholar 

  • Colon, L. T. et al. Resistance to potato late blight (Phytophthora infestans (Mont.) de Bary) in Solanum nigrum, S. villosum and their sexual hybrids with S. tuberosum and S. demissum. Euphytica 66, 55–64 (1992).

    Article  Google Scholar 

  • Lebecka, R. Host–pathogen interaction between Phytophthora infestans and Solanum nigrum, S. villosum, and S. scabrum. Eur. J. Plant Pathol. 120, 233–240 (2007).

    Article  Google Scholar 

  • Poczai, P. & Hyvönen, J. On the origin of Solanum nigrum: can networks help? Mol. Biol. Rep. 38, 1171–1185 (2010).

    Article  PubMed  Google Scholar 

  • Ward, B. J. & van Oosterhout, C. HYBRIDCHECK: software for the rapid detection, visualization and dating of recombinant regions in genome sequence data. Mol. Ecol. Resour. 16, 534–539 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Vleeshouwers, V. G. A. A. et al. Understanding and exploiting late blight resistance in the age of effectors. Annu. Rev. Phytopathol. 49, 507–531 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Vleeshouwers, V. G. A. A., van Dooijeweert, W., Govers, F., Kamoun, S. & Colon, L. T. The hypersensitive response is associated with host and nonhost resistance to Phytophthora infestans. Planta 210, 853–864 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Jones, J. D. G. et al. Elevating crop disease resistance with cloned genes. Philos. Trans. R. Soc. Lond. B 369, 20130087 (2014).

    Article  Google Scholar 

  • Dodds, P. N. et al. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc. Natl Acad. Sci. USA 103, 8888–8893 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouet, A., McMullan, M. & van Oosterhout, C. The effects of recombination, mutation and selection on the evolution of the Rp1 resistance genes in grasses. Mol. Ecol. 24, 3077–3092 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Ohta, T. Gene conversion vs point mutation in generating variability at the antigen recognition site of major histocompatibility complex loci. J. Mol. Evol. 41, 115–119 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Spurgin, L. G. et al. Gene conversion rapidly generates major histocompatibility complex diversity in recently founded bird populations. Mol. Ecol. 20, 5213–5225 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Huang, J. et al. Phytophthora effectors modulate genome-wide alternative splicing of host mRNAs to reprogram plant immunity. Mol. Plant 13, 1470–1484 (2020).

  • Sato, S. et al. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635–641 (2012).

    Article  CAS  Google Scholar 

  • Steuernagel, B. et al. NLR-parser: rapid annotation of plant NLR complements. Bioinformatics 10, 1665–1667 (2015).

    Article  Google Scholar 

  • Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanke, M. & Morgenstern, B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 33, W465–W467 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H. et al. The sequence alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiume, M., Williams, V., Brook, A. & Bioinformatics, M. B. Savant: genome browser for high-throughput sequencing data. Bioinformatics 25, 1938–1944 (2010).

    Article  Google Scholar 

  • Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25, 1105–1111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, A., Taylor, M. A., Arif, S. A. M. & Davies, H. V. Potato plants expressing antisense and sense S-adenosylmethionine decarboxylase (SAMDC) transgenes show altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes. Plant J. 9, 147–158 (1996).

    Article  CAS  Google Scholar 

  • Castel, B. et al. Diverse NLR immune receptors activate defence via the RPW8- NLR NRG1. New Phytol. 222, 966–980 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J. D., Higgins, D. G., Gibson, T. J. & CLUSTAL, W. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Nei, M., Dudley, J. & Tamura, K. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 9, 299–306 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouy, M., Guindon, S. & Gascuel, O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2009).

    Article  PubMed  Google Scholar 

  • Rozas, J. & Sánchez-DelBarrio, J. C. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496–2497 (2009).

    Article  Google Scholar 

  • Xia, X. DAMBE: a comprehensive software package for data analysis in molecular biology and evolution. Mol. Biol. Evol. 30, 1720–1728 (2013).

  • Ratmann, O., Lam, H. M. & Boni, M. F. Improved algorithmic complexity for the 3SEQ recombination detection algorithm. Mol. Biol. Evol. 35, 247–251 (2017).

    PubMed Central  Google Scholar 

  • Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phanstiel D. H. Sushi: Tools for visualizing genomics data. R package version 1.26.0 (2020).

  • Champouret, N. et al. Phytophthora infestans isolates lacking class I ipiO variants are virulent on Rpi-blb1 potato. Mol. Plant Microbe Interact. 22, 1535–1545 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Cooke, D. E. L. et al. Genome analyses of an aggressive and invasive lineage of the Irish potato famine pathogen. PLoS Pathog. 8, e1002940 (2012).

    Article  PubMed  PubMed Central  Google Scholar