nature.com

Young genes are highly disordered as predicted by the preadaptation hypothesis of de novo gene birth - Nature Ecology & Evolution

  • ️Masel, Joanna
  • ️Mon Apr 24 2017
  • McLysaght, A. & Guerzoni, D. New genes from non-coding sequence: the role of de novo protein-coding genes in eukaryotic evolutionary innovation. Phil. Trans. R. Soc. B 370, 20140332 (2015).

    Article  Google Scholar 

  • Monsellier, E. & Chiti, F. Prevention of amyloid-like aggregation as a driving force of protein evolution. EMBO Rep. 8, 737–742 (2007).

    Article  CAS  Google Scholar 

  • Carvunis, A.-R. et al. Proto-genes and de novo gene birth. Nature 487, 370–374 (2012).

    Article  CAS  Google Scholar 

  • Masel, J. Cryptic genetic variation is enriched for potential adaptations. Genetics 172, 1985–1991 (2006).

    Article  CAS  Google Scholar 

  • Rajon, E. & Masel, J. The evolution of molecular error rates and the consequences for evolvability. Proc. Natl Acad. Sci. USA 108, 1082–1087 (2011).

    Article  CAS  Google Scholar 

  • Wilson, B. A. & Masel, J. Putatively noncoding transcripts show extensive association with ribosomes. Genome Biol. Evol. 3, 1245–1252 (2011).

    Article  CAS  Google Scholar 

  • Neme, R. & Tautz, D. Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics 14, 117 (2013).

    Article  CAS  Google Scholar 

  • Romero, P . et al. Thousands of proteins likely to have long disordered regions. Pac. Symp. Biocomput. 1998, 437–448 (1998).

    Google Scholar 

  • Dosztányi, Z., Csizmok, V., Tompa, P. & Simon, I. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433–3434 (2005).

    Article  Google Scholar 

  • Yu, J.-F. et al. Natural protein sequences are more intrinsically disordered than random sequences. Cell. Mol. Life Sci. 73, 2949–2957 (2016).

    Article  CAS  Google Scholar 

  • Buljan, M., Frankish, A. & Bateman, A. Quantifying the mechanisms of domain gain in animal proteins. Genome Biol. 11, R74 (2010).

    Article  Google Scholar 

  • Moore, A. D. & Bornberg-Bauer, E. The dynamics and evolutionary potential of domain loss and emergence. Mol. Biol. Evol. 29, 787–796 (2012).

    Article  CAS  Google Scholar 

  • Ekman, D. & Elofsson, A. Identifying and quantifying orphan protein sequences in fungi. J. Mol. Biol. 396, 396–405 (2010).

    Article  CAS  Google Scholar 

  • Bornberg-Bauer, E. & Albà, M. M. Dynamics and adaptive benefits of modular protein evolution. Curr. Opin. Struct. Biol. 23, 459–466 (2013).

    Article  CAS  Google Scholar 

  • Mukherjee, S., Panda, A. & Ghosh, T. C. Elucidating evolutionary features and functional implications of orphan genes in Leishmania major. Infect. Genet. Evol. 32, 330–337 (2015).

    Article  CAS  Google Scholar 

  • Rancurel, C., Khosravi, M., Dunker, A. K., Romero, P. R. & Karlin, D. Overlapping genes produce proteins with unusual sequence properties and offer insight into de novo protein creation. J. Virol. 83, 10719–10736 (2009).

    Article  CAS  Google Scholar 

  • Domazet-Lošo, T., Brajković, J. & Tautz, D. A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. Trends Genet. 23, 533–539 (2007).

    Article  Google Scholar 

  • Moyers, B. A. & Zhang, J. Phylostratigraphic bias creates spurious patterns of genome evolution. Mol. Biol. Evol. 32, 258–267 (2015).

    Article  CAS  Google Scholar 

  • Moyers, B. A. & Zhang, J. Evaluating phylostratigraphic evidence for widespread de novo gene birth in genome evolution. Mol. Biol. Evol. 33, 1245–1256 (2016).

    Article  CAS  Google Scholar 

  • Albà, M. M. & Castresana, J. On homology searches by protein Blast and the characterization of the age of genes. BMC Evol. Biol. 7, 53 (2007).

    Article  Google Scholar 

  • Chen, S. C.-C., Chuang, T.-J. & Li, W.-H. The relationships among microRNA regulation, intrinsically disordered regions, and other indicators of protein evolutionary rate. Mol. Biol. Evol. 28, 2513–2520 (2011).

    Article  CAS  Google Scholar 

  • Podder, S. & Ghosh, T. C. Exploring the differences in evolutionary rates between monogenic and polygenic disease genes in human. Mol. Biol. Evol. 27, 934–941 (2010).

    Article  CAS  Google Scholar 

  • Light, S., Basile, W. & Elofsson, A. Orphans and new gene origination, a structural and evolutionary perspective. Curr. Opin. Struct. Biol. 26, 73–83 (2014).

    Article  CAS  Google Scholar 

  • Domazet-Lošo, T. et al. No evidence for phylostratigraphic bias impacting inferences on patterns of gene emergence and evolution. Mol. Biol. Evol. 34, 843–856 (2017).

    PubMed  PubMed Central  Google Scholar 

  • White, S. H. Amino acid preferences of small proteins. J. Mol. Biol. 227, 991–995 (1992).

    Article  CAS  Google Scholar 

  • Irbäck, A. & Sandelin, E. On hydrophobicity correlations in protein chains. Biophys. J. 79, 2252–2258 (2000).

    Article  Google Scholar 

  • Sandelin, E. On hydrophobicity and conformational specificity in proteins. Biophys. J. 86, 23–30 (2004).

    Article  CAS  Google Scholar 

  • Bock, W. J. Preadaptation and multiple evolutionary pathways. Evolution 13, 194–211 (1959).

    Article  Google Scholar 

  • Gould, S. J. & Vrba, E. S. Exaptation—a missing term in the science of form. Paleobiology 8, 4–15 (1982).

    Article  Google Scholar 

  • Whitehead, D. J., Wilke, C. O., Vernazobres, D. & Bornberg-Bauer, E. The look-ahead effect of phenotypic mutations. Biol. Direct 3, 18 (2008).

    Article  Google Scholar 

  • Ángyán, A. F., Perczel, A. & Gáspári, Z. Estimating intrinsic structural preferences of de novo emerging random-sequence proteins: is aggregation the main bottleneck? FEBS Lett. 586, 2468–2472 (2012).

    Article  Google Scholar 

  • Malinas, G. & Bigelow, J. Simpson’s Paradox (ed. Zalta, E. N. ) https://plato.stanford.edu/archives/fall2016/entries/paradox-simpson/ (2016).

    Google Scholar 

  • Neme, R. & Tautz, D. Fast turnover of genome transcription across evolutionary time exposes entire non-coding DNA to de novo gene emergence. eLife 5, e09977 (2016).

    Article  Google Scholar 

  • Graur, D. et al. On the immortality of television sets: “function” in the human genome according to the evolution-free gospel of ENCODE. Genome Biol. Evol. 5, 578–590 (2013).

    Article  Google Scholar 

  • Tartaglia, G. G., Pellarin, R., Cavalli, A. & Caflisch, A. Organism complexity anti-correlates with proteomic β-aggregation propensity. Protein Sci. 14, 2735–2740 (2005).

    Article  CAS  Google Scholar 

  • Flicek, P. et al. Ensembl 2014. Nucleic Acids Res. 42, D749–D755 (2014).

    Article  CAS  Google Scholar 

  • Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  • Smedley, D. et al. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res. 43, W589–W598 (2015).

    Article  CAS  Google Scholar 

  • Uversky, V. N. & Dunker, A. K. Understanding protein non-folding. BBA-Proteins Proteom. 1804, 1231–1264 (2010).

    Article  CAS  Google Scholar 

  • Smit, A. F. A., Hubley, R . & Green, P. RepeatMasker Open-4.0 v. 4.0.5 (2013–2015); http://www.repeatmasker.org

  • Cherry, J. M. et al. Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res. 40, D700–D705 (2012).

    Article  CAS  Google Scholar