The future lifespan of Earth’s oxygenated atmosphere - Nature Geoscience
- ️Reinhard, Christopher T.
- ️Mon Mar 01 2021
References
Fujii, Y. et al. Exoplanet biosignatures: observational prospects. Astrobiology 18, 739–778 (2018).
An Astrobiology Strategy for the Search for Life in the Universe (National Academies, 2019).
The LUVOIR Team. The LUVOIR Mission Concept Study Final Report. Available at https://asd.gsfc.nasa.gov/luvoir/reports/ (2019).
Meadows, V. S. et al. Exoplanet biosignatures: understanding oxygen as a biosignature in the context of its environment. Astrobiology 18, 630–662 (2018).
Schwieterman, E. W. et al. Exoplanet biosignatures: a review of remotely detectable signs of life. Astrobiology 18, 663–708 (2018).
Meadows, V. Reflections on O2 as a biosignature in exoplanetary atmospheres. Astrobiology 17, 1022–1052 (2017).
Wordsworth, R. & Pierrehumbert, R. Abiotic oxygen-dominated atmospheres on terrestrial habitable zone planets. Astrophys. J. Lett. 785, L20 (2014).
Gao, P., Hu, R., Robinson, T. D., Li, C. & Yung, Y. L. Stability of CO2 atmospheres on desiccated M dwarf exoplanets. Astrophys. J. 806, 249 (2015).
Luger, R. & Barnes, R. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of m dwarfs. Astrobiology 15, 119–143 (2015).
Prentice, I. C. et al. in Climate Change 2001: The Scientific Basis (eds Houghton, J. T. et al.) 183–238 (IPCC, Cambridge Univ. Press, 2001).
Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).
Lenton, T. M. et al. Earliest land plants created modern levels of atmospheric oxygen. Proc. Natl Acad. Sci. USA 113, 9704–9709 (2016).
Krause, A. J. et al. Stepwise oxygenation of the paleozoic atmosphere. Nat. Commun. 9, 4081 (2018).
Lenton, T. M. Gaia and natural selection. Nature 394, 439–447 (1998).
Lenton, T. M., Crouch, M., Johnson, M., Pires, N. & Dolan, L. First plants cooled the Ordovician. Nat. Geosci. 5, 86–89 (2012).
Caldeira, K. & Kasting, J. F. The life span of the biosphere revisited. Nature 360, 721–723 (1992).
Lovelock, J. E. & Whitfield, M. Life span of the biosphere. Nature 296, 561–563 (1982).
Franck, S., Bounama, C. & von Bloh, W. Causes and timing of future biosphere extinctions. Biogeosciences 3, 85–92 (2006).
Franck, S., Kossacki, K. J., Von Bloth, W. & Bounama, C. Long-term evolution of the global carbon cycle: historic minimum of global surface temperature at present. Tellus B 54, 325–343 (2002).
O’Malley-James, J. T., Greaves, J. S., Raven, J. A. & Cockell, C. S. Swansong biospheres: refuges for life and novel microbial biospheres on terrestrial planets near the end of their habitable lifetimes. Int. J. Astrobiol. 12, 99–112 (2013).
Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. 86, 9776–9782 (1981).
Kasting, J. F. Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472–494 (1988).
Leconte, J., Forget, F., Charnay, B., Wordsworth, R. & Pottier, A. Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature 504, 268–271 (2013).
Claire, M. W., Catling, D. C. & Zahnle, K. J. Biogeochemical modelling of the rise in atmospheric oxygen. Geobiology 4, 239–269 (2006).
Reinhard, C. T. et al. Oceanic and atmospheric methane cycling in the cGENIE Earth system model. Geosci. Model Dev. Discuss. https://doi.org/10.5194/gmd-2020-32 (2020).
Byrne, B. & Goldblatt, C. Radiative forcing at high concentrations of well-mixed greenhouse gases. Geophys. Res. Lett. 41, 152–160 (2014).
Holland, H. D. Volcanic gases, black smokers, and the great oxidation event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002).
Arney, G. et al. The pale orange dot: the spectrum and habitability of hazy Archean earth. Astrobiology 16, 873–899 (2016).
Haqq-Misra, J. D., Domagal-Goldman, S. D., Kasting, P. J. & Kasting, J. F. A revised, hazy methane greenhouse for the Archean earth. Astrobiology 8, 1127–1137 (2008).
Trainer, M. G. et al. Haze aerosols in the atmosphere of early Earth: manna from heaven. Astrobiology 4, 409–419 (2004).
Jenkins, J. M. et al. Discovery and validation of Kepler-452b: a 1.6R⊕ super earth exoplanet in the habitable zone of a G2 star. Astron. J. 150, 56 (2015).
Mullally, F., Thompson, S. E., Coughlin, J. L., Burke, C. J. & Rowe, J. F. Kepler’s Earth-like planets should not be confirmed without independent detection: the Case of Kepler-452b. Astron. J. 155, 210 (2018).
Mackenzie, F. T. & Kump, L. R. Reverse weathering, clay mineral formation, and oceanic element cycles. Science 270, 586–586 (1995).
Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560, 471–475 (2018).
Wolf, E. T., Shields, A. L., Kopparapu, R. K., Haqq-Misra, J. & Toon, O. B. Constraints on climate and habitability for earth-like exoplanets determined from a general circulation model. Astrophys. J. 837, 107 (2017).
Gough, D. O. Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981).
Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001).
Reinhard, C. T., Olson, S. L., Schwieterman, E. W. & Lyons, T. W. False negatives for remote life detection on ocean-bearing planets: lessons from the early earth. Astrobiology 17, 287–297 (2017).
Schwieterman, E.W., Reinhard, C.T., Olson, S.L., Lyons, T.W. The importance of UV capabilities for identifying exoplanets with next generation space telescopes. [white paper submitted in response to the solicitation of feedback for the NAS Astrobiology Science Strategy for the Search for Life in the Universe 2018 by the National Academy of Sciences] (2018).
Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processes through time. Phil. Trans. R. Soc. B 361, 931–950 (2006).
Eguchi, J., Seales, J. & Dasgupta, R. Great Oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon. Nat. Geosci. 13, 71–76 (2020).
Evans, K. A. The redox budget of subduction zones. Earth Sci. Rev. 113, 11–32 (2012).
Kadoya, S., Catling, D. C., Nicklas, R. W., Puchtel, I. S. & Anbar, A. D. Mantle data imply a decline of oxidizable volcanic gases could have triggered the Great Oidation. Nat. Commun. 11, 2774 (2020).
Lee, C.-T. A. et al. Two-step rise of atmospheric oxygen linked to the growth of continents. Nat. Geosci. 9, 417–424 (2016).
Ozaki, K., Reinhard, C. T. & Tajika, E. A sluggish mid-Proterozoic biosphere and its effect on Earth’s redox balance. Geobiology 17, 3–11 (2019).
Ozaki, K., Tajika, E., Hong, P. K., Nakagawa, Y. & Reinhard, C. T. Effects of primitive photosynthesis on Earth’s early climate system. Nat. Geosci. 11, 55–59 (2018).
Kasting, J. F. Earth’s early atmosphere. Science 259, 920–926 (1993).
Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).
Laakso, T. A. & Schrag, D. P. Limitations on limitation. Glob. Biogeochem. Cycles 32, 486–496 (2018).
Laakso, T. A. & Schrag, D. P. Methane in the Precambrian atmosphere. Earth Planet. Sci. Lett. 522, 48–54 (2019).
Lenton, T. M., Daines, S. J. & Mills, B. J. W. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).
Hein, M. & Sand-Jensen, K. CO2 increases oceanic primary production. Nature 388, 526–527 (1997).
Riebesell, U., Wolf-Gladrow, D. A. & Smetacek, V. Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361, 249–251 (1993).
Goldblatt, C., Lenton, T. M. & Watson, A. J. Bistability of atmospheric oxygen and the Great Oxidation. Nature 443, 683–686 (2006).
Galbraith, E. D. & Eggleston, S. A lower limit to atmospheric CO2 concentrations over the past 800,000 years. Nat. Geosci. 10, 295–298 (2017).
Pagani, M., Caldeira, K., Berner, R. & Beerling, D. J. The role of terrestrial plants in limiting atmospheric CO2 decline over the past 24 million years. Nature 460, 85–88 (2009).
Beerling, D., Berner, R. A., Mackenzie, F. T., Harfoot, M. B. & Pyle, J. A. Methane and the CH4 related greenhouse effect over the past 400 million years. Am. J. Sci. 309, 97–113 (2009).
Canfield, D. E. The evolution of the earth surface sulfur reservoir. Am. J. Sci. 304, 839–861 (2004).
Lécuyer, C. & Ricard, Y. Long-term fluxes and budget of ferric iron: implication for the redox states of the Earth’s mantle and atmosphere. Earth Planet. Sci. Lett. 165, 197–211 (1999).
Catling, D. C. & Kasting, J. F. Atmospheric Evolution on Inhabited and Lifeless Worlds (Cambridge Univ. Press, 2017).
Williams, D. M. & Kasting, J. F. Habitable planets with high obliquities. Icarus 129, 254–267 (1997).
Pierrehumbert, R. T., Abbot, D. S., Voigt, A. & Koll, D. Climate of the neoproterozoic. Annu. Rev. Earth Planet. Sci. 39, 417–460 (2011).
Goldblatt, C., Robinson, T. D., Zahnle, K. J. & Crisp, D. Low simulated radiation limit for runaway greenhouse climates. Nat. Geosci. 6, 661–667 (2013).
Kopparapu, R. K. et al. Habitable zones around main-sequence stars: new estimates. Astrophys. J. 765, 131 (2013).
Abe, Y., Abe-Ouchi, A., Sleep, N. H. & Zahnle, K. J. Habitable zone limits for dry planets. Astrobiology 11, 443–460 (2011).
Krissansen-Totton, J., Arney, G. N. & Catling, D. C. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model. Proc. Natl Acad. Sci. USA 115, 4105–4110 (2018).
Krissansen-Totton, J. & Catling, D. C. Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model. Nat. Commun. 8, 15423 (2017).
Graham, R. J. & Pierrehumbert, R. Thermodynamic and energetic limits on continental silicate weathering strongly impact the climate and habitability of wet, rocky worlds. Astrophys. J. 896, 115 (2020).
Winnick, M. J. & Maher, K. Relationships between CO2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback. Earth Planet. Sci. Lett. 485, 111–120 (2018).
Royer, D. L., Donnadieu, Y., Park, J., Kowalczyk, J. & Goddéris, Y. Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF. Am. J. Sci. 314, 1259-1283, https://doi.org/10.2475/09.2014.01 (2014).
Ibarra, D. E. et al. Modeling the consequences of land plant evolution on silicate weathering. Am. J. Sci. 319, 1–43 (2019).
Moulton, K. L. & Berner, R. A. Quantification of the effect of plants on weathering: studies in Iceland. Geology 26, 895–898 (1998).