End-Permian marine extinction due to temperature-driven nutrient recycling and euxinia - Nature Geoscience
- ️Ridgwell, Andy
- ️Thu Oct 28 2021
References
Erwin, D. H. The Permo-Triassic extinction. Nature 367, 231–236 (1994).
Renne, P. R., Black, M. T., Zichao, Z., Richards, M. A. & Basu, A. R. Synchrony and causal relations between Permian–Triassic boundary crises and Siberian flood volcanism. Science 269, 1413–1416 (1995).
Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in Earth history. Proc. Natl Acad. Sci. USA 113, E6325–E6334 (2016).
Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 1–6 (2017).
Burgess, S. D., Bowring, S. & Shen, S.-z. High-precision timeline for Earth’s most severe extinction. Proc. Natl Acad. Sci. USA 111, 3316–3321 (2014).
Sun, Y. et al. Lethally hot temperatures during the early triassic greenhouse. Science 338, 366–370 (2012).
Joachimski, M. M. et al. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40, 195–198 (2012).
Joachimski, M. M., Alekseev, A. S., Grigoryan, A. & Gatovsky, Y. A. Siberian trap volcanism, global warming and the Permian–Triassic mass extinction: new insights from Armenian Permian–Triassic sections. GSA Bull. 132, 427–443 (2020).
Grice, K. et al. Photic zone euxinia during the Permian–Triassic superanoxic event. Science 307, 706–709 (2005).
Brennecka, G. A., Herrmann, A. D., Algeo, T. J. & Anbar, A. D. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 108, 17631–17634 (2011).
Lau, K. V. et al. Marine anoxia and delayed Earth system recovery after the end-Permian extinction. Proc. Natl Acad. Sci. USA 113, 2360–2365 (2016).
Korte, C. & Kozur, H. W. Carbon-isotope stratigraphy across the Permian–Triassic boundary: a review. J. Asian Earth Sci. 39, 215–235 (2010).
Erwin, D. H. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago, Updated Edition, vol. 37 (Princeton Univ. Press, 2015).
Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).
Winguth, A. M. E. & Maier-Reimer, E. Causes of the marine productivity and oxygen changes associated with the Permian–Triassic boundary: a reevaluation with ocean general circulation models. Mar. Geol. 217, 283–304 (2005).
Winguth, C. & Winguth, A. M. E. Simulating Permian–Triassic oceanic anoxia distribution: implications for species extinction and recovery. Geology 40, 127–130 (2012).
Meyer, K. M., Kump, L. R. & Ridgwell, A. Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction. Geology 36, 747–750 (2008).
Meyer, K. M., Ridgwell, A. & Payne, J. L. The influence of the biological pump on ocean chemistry: implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems. Geobiology 14, 207–219 (2016).
Zhang, F. et al. Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction. Sci. Adv. 4, e1602921 (2018).
Rothman, D. H. et al. Methanogenic burst in the end-Permian carbon cycle. Proc. Natl Acad. Sci. USA 111, 5462–5467 (2014).
Cui, Y., Kump, L. R. & Ridgwell, A. Initial assessment of the carbon emission rate and climatic consequences during the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 389, 128–136 (2013).
Clarkson, M. O. et al. Ocean acidification and the Permo–Triassic mass extinction. Science 348, 229–232 (2015).
Meyer, K. M., Yu, M., Jost, A. B., Kelley, B. M. & Payne, J. L. δ13C evidence that high primary productivity delayed recovery from end-Permian mass extinction. Earth Planet. Sci. Lett. 302, 378–384 (2011).
Song, H. et al. Large vertical δ13CDIC gradients in Early Triassic seas of the South China Craton: implications for oceanographic changes related to Siberian traps volcanism. Global Planet. Change 105, 7–20 (2013).
Luo, G. et al. Vertical 13Corg gradients record changes in planktonic microbial community composition during the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 396, 119–131 (2014).
Algeo, T. J. et al. Changes in productivity and redox conditions in the Panthalassic Ocean during the latest Permian. Geology 38, 187–190 (2010).
Schobben, M. et al. Flourishing ocean drives the end-Permian marine mass extinction. Proc. Natl Acad. Sci. USA 112, 10298–10303 (2015).
Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).
Kump, L. R., Pavlov, A. & Arthur, M. A. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33, 397–400 (2005).
Keeling, R. F., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Ann. Rev. Mar. Sci. 2, 199–229 (2010).
Lu, W. et al. Late inception of a resiliently oxygenated upper ocean. Science 361, 174–177 (2018).
López-Urrutia, A., Martin, E. S., Harris, R. P. & Irigoien, X. Scaling the metabolic balance of the oceans. Proc. Natl Acad. Sci. USA 103, 8739–8744 (2006).
Ridgwell, A. et al. Marine geochemical data assimilation in an efficient Earth system model of global biogeochemical cycling. Biogeosciences 4, 87–104 (2007).
Hülse, D., Arndt, S., Daines, S., Regnier, P. & Ridgwell, A. OMEN-SED 1.0: a novel, numerically efficient organic matter sediment diagenesis module for coupling to Earth system models. Geosci. Model Dev. 11, 2649–2689 (2018).
Hülse, D., Arndt, S., Wilson, J. D., Munhoven, G. & Ridgwell, A. Understanding the causes and consequences of past marine carbon cycling variability through models. Earth Sci. Rev. 171, 349–382 (2017).
Heim, N. A., Knope, M. L., Schaal, E. K., Wang, S. C. & Payne, J. L. Cope’s rule in the evolution of marine animals. Science 347, 867–870 (2015).
Sinninghe Damsté, J. S., Kok, M. D., Köster, J. & Schouten, S. Sulfurized carbohydrates: an important sedimentary sink for organic carbon? Earth Planet. Sci. Lett. 164, 7–13 (1998).
Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. Oceans 86, 9776–9782 (1981).
Van Cappellen, P. & Ingall, E. D. Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography 9, 677–692 (1994).
Schobben, M. et al. A nutrient control on marine anoxia during the end-Permian mass extinction. Nat. Geosci. 13, 640–646 (2020).
Hülse, D., Arndt, S. & Ridgwell, A. Mitigation of extreme ocean anoxic event conditions by organic matter sulfurization. Paleoceanogr. Paleoclimatol.34, 476–489 (2019).
Li, X. et al. Particulate sulfur species in the water column of the Cariaco Basin. Geochim. Cosmochim. Acta 75, 148–163 (2011).
Helly, J. J. & Levin, L. A. Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Res I 51, 1159–1168 (2004).
Montenegro, A. et al. Climate simulations of the Permian–Triassic boundary: ocean acidification and the extinction event. Paleoceanography 26, PA3207 (2011).
Naafs, B. D. A. et al. Fundamentally different global marine nitrogen cycling in response to severe ocean deoxygenation. Proc. Natl Acad. Sci. USA 116, 24979–24984 (2019).
Berner, R. A. The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic. Geochim. Cosmochim. Acta 69, 3211–3217 (2005).
Payne, J. L. & Kump, L. R. Evidence for recurrent early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth Planet. Sci. Lett. 256, 264–277 (2007).
Ridgwell, A. A mid mesozoic revolution in the regulation of ocean chemistry. Mar. Geol. 217, 339–357 (2005).
Zhang, F. et al. Global-ocean redox variations across the Smithian–Spathian boundary linked to concurrent climatic and biotic changes. Earth Sci. Rev. 195, 147–168 (2019).
Elrick, M. et al. Global-ocean redox variation during the middle–late Permian through early Triassic based on uranium isotope and Th/U trends of marine carbonates. Geology 45, 163–166 (2017).
Zhang, F. et al. Congruent Permian–Triassic δ238U records at Panthalassic and Tethyan sites: confirmation of global-oceanic anoxia and validation of the U-isotope paleoredox proxy. Geology 46, 327–330 (2018).
Schobben, M., Joachimski, M. M., Korn, D., Leda, L. & Korte, C. Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction. Gondwana Res. 26, 675–683 (2014).
Winguth, A. M. E., Shields, C. A. & Winguth, C. Transition into a hothouse world at the Permian–Triassic boundary a model study. Palaeogeogr. Palaeoclimatol. Palaeoecol. 440, 316–327 (2015).
John, E. H., Wilson, J. D., Pearson, P. N. & Ridgwell, A. Temperature-dependent remineralization and carbon cycling in the warm eocene oceans. Palaeogeogr. Palaeoclimatol. Palaeoecol. 413, 158–166 (2014).
Crichton, K. A., Wilson, J. D., Ridgwell, A. & Pearson, P. N. Calibration of key temperature-dependent ocean microbial processes in the cGENIE.muffin Earth system model. Geoscientific Model Development Discussions 1–26 (Copernicus, 2020).
Butterfield, N. J. Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7, 1–7 (2009).
Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004).
Smayda, T. J. The suspension and sinking of phytoplankton in the sea. Oceanogr. Mar. Biol. Annu. Rev. 8, 353–414 (1970).
Morford, J. L. & Emerson, S. The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta 63, 1735–1750 (1999).
Chen, X. et al. Diagenetic effects on uranium isotope fractionation in carbonate sediments from the Bahamas. Geochim. Cosmochim. Acta 237, 294–311 (2018).
Tissot, F. L. H. et al. Controls of eustasy and diagenesis on the 238U/235U of carbonates and evolution of the seawater (234U/238U) during the last 1.4 Myr. Geochim. Cosmochim. Acta 242, 233–265 (2018).
Mundil, R., Ludwig, K. R., Metcalfe, I. & Renne, P. R. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science 305, 1760–1763 (2004).
Galfetti, T. et al. Timing of the early Triassic carbon cycle perturbations inferred from new U-Pb ages and ammonoid biochronozones. Earth Planet. Sci. Lett. 258, 593–604 (2007).
Summons, R. E. & Powell, T. G. Identification of aryl isoprenoids in source rocks and crude oils: biological markers for the green sulphur bacteria. Geochim. Cosmochim. Acta 51, 557–566 (1987).
Wignall, P. B. & Newton, R. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. Am. J. Sci. 298, 537–552 (1998).
Jin, Y. G. et al. Pattern of marine mass extinction near the Permian–Triassic boundary in South China. Science 289, 432–436 (2000).
Shen, S.-z et al. Calibrating the end-Permian mass extinction. Science 334, 1367–1372 (2011).
Isozaki, Y. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276, 235–238 (1997).
Hays, L. E., Beatty, T., Henderson, C. M., Love, G. D. & Summons, R. E. Evidence for photic zone euxinia through the end-Permian mass extinction in the Panthalassic Ocean (Peace River Basin, Western Canada). Palaeoworld 16, 39–50 (2007).
Wignall, P. B. & Newton, R. Contrasting deep-water records from the upper Permian and lower Triassic of South Tibet and British Columbia: evidence for a diachronous mass extinction. PALAIOS 18, 153–167 (2003).
Nielsen, J. K. & Shen, Y. Evidence for sulfidic deep water during the late Permian in the East Greenland Basin. Geology 32, 1037–1040 (2004).
Pancost, R. D., Crawford, N. & Maxwell, J. R. Molecular evidence for basin-scale photic zone euxinia in the Permian Zechstein Sea. Chem. Geol. 188, 217–227 (2002).
Wignall, P. B., Newton, R. & Brookfield, M. E. Pyrite framboid evidence for oxygen-poor deposition during the Permian–Triassic crisis in Kashmir. Palaeogeogr. Palaeoclimatol. Palaeoecol. 216, 183–188 (2005).
Algeo, T. J. et al. Sequencing events across the Permian–Triassic boundary, Guryul Ravine (Kashmir, India). Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 328–346 (2007).
Algeo, T. J. et al. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian–Triassic Panthalassic Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 65–83 (2011).
Takahashi, S. et al. Bioessential element-depleted ocean following the euxinic maximum of the end-Permian mass extinction. Earth Planet. Sci. Lett. 393, 94–104 (2014).
Riccardi, A. L., Arthur, M. A. & Kump, L. R. Sulfur isotopic evidence for chemocline upward excursions during the end-Permian mass extinction. Geochim. Cosmochim. Acta 70, 5740–5752 (2006).
Riccardi, A., Kump, L. R., Arthur, M. A. & D’Hondt, S. Carbon isotopic evidence for chemocline upward excursions during the end-Permian event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 248, 73–81 (2007).
Cao, C. et al. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth Planet. Sci. Lett. 281, 188–201 (2009).
Wignall, P. B., Hallam, A., Xulong, L. & Fengqing, Y. Palaeoenvironmental changes across the Permian/Triassic boundary at Shangsi (N. Sichuan, China). Hist. Biol. 10, 175–189 (1995).
Wignall, P. B. & Hallam, A. Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeogr. Palaeoclimatol. Palaeoecol. 93, 21–46 (1992).
Wignall, P. B. & Twitchett, R. J. Oceanic anoxia and the end Permian mass extinction. Science 272, 1155–1158 (1996).
Dolenec, T., Lojen, S. & Ramov, A. The Permian–Triassic boundary in Western Slovenia (Idrijca Valley section): magnetostratigraphy, stable isotopes, and elemental variations. Chem. Geol. 175, 175–190 (2001).
Newton, R. J., Pevitt, E. L., Wignall, P. B. & Bottrell, S. H. Large shifts in the isotopic composition of seawater sulphate across the Permo–Triassic boundary in northern Italy. Earth Planet. Sci. Lett. 218, 331–345 (2004).
Schwab, V. & Spangenberg, J. E. Organic geochemistry across the Permian–Triassic transition at the Idrijca Valley, Western Slovenia. Appl. Geochem. 19, 55–72 (2004).
Fio, K. et al. Stable isotope and trace element stratigraphy across the Permian–Triassic transition: a redefinition of the boundary in the Velebit Mountain, Croatia. Chem. Geol. 278, 38–57 (2010).
Algeo, T. et al. Evidence for a diachronous Late Permian marine crisis from the Canadian Arctic region. GSA Bull. 124, 1424–1448 (2012).
Grasby, S. E., Beauchamp, B., Embry, A. & Sanei, H. Recurrent Early Triassic ocean anoxia. Geology 41, 175–178 (2013).
Grasby, S. E., Beauchamp, B. & Knies, J. Early Triassic productivity crises delayed recovery from world’s worst mass extinction. Geology 44, 779–782 (2016).
Loope, G. R., Kump, L. R. & Arthur, M. A. Shallow water redox conditions from the Permian–Triassic boundary microbialite: the rare earth element and iodine geochemistry of carbonates from Turkey and South China. Chem. Geol. 351, 195–208 (2013).
Algeo, T. J., Ellwood, B., Nguyen, T. K. T., Rowe, H. & Maynard, J. B. The Permian–Triassic boundary at Nhi Tao, Vietnam: evidence for recurrent influx of sulfidic watermasses to a shallow-marine carbonate platform. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 304–327 (2007).
Algeo, T. et al. Association of 34S-depleted pyrite layers with negative carbonate δ13C excursions at the Permian–Triassic boundary: evidence for upwelling of sulfidic deep-ocean water masses. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2007GC001823 (2008).
Woods, A. D., Bottjer, D. J., Mutti, M. & Morrison, J. Lower Triassic large sea-floor carbonate cements: their origin and a mechanism for the prolonged biotic recovery from the end-Permian mass extinction. Geology 27, 645–648 (1999).
Sperling, E. A. & Ingle, J. C. A Permian–Triassic boundary section at Quinn River Crossing, northwestern Nevada, and implications for the cause of the early Triassic chert gap on the western Pangean margin. GSA Bull. 118, 733–746 (2006).