nature.com

N4BP1 restricts HIV-1 and its inactivation by MALT1 promotes viral reactivation - Nature Microbiology

  • ️Takeuchi, Osamu
  • ️Mon May 27 2019
  • Simon, V., Bloch, N. & Landau, N. R. Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat. Immunol. 16, 546–553 (2015).

    Article  CAS  Google Scholar 

  • Krapp, C. et al. Guanylate binding protein (GBP) 5 is an interferon-inducible inhibitor of HIV-1 infectivity. Cell Host Microbe 19, 504–514 (2016).

    Article  CAS  Google Scholar 

  • Goujon, C. et al. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 502, 559–562 (2013).

    Article  CAS  Google Scholar 

  • Kane, M. et al. MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature 502, 563–566 (2013).

    Article  CAS  Google Scholar 

  • Liu, Z. et al. The interferon-inducible MxB protein inhibits HIV-1 infection. Cell Host Microbe 14, 398–410 (2013).

    Article  CAS  Google Scholar 

  • Stremlau, M. et al. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427, 848–853 (2004).

    Article  CAS  Google Scholar 

  • Neil, S. J., Zang, T. & Bieniasz, P. D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451, 425–430 (2008).

    Article  CAS  Google Scholar 

  • Van Damme, N. et al. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3, 245–252 (2008).

    Article  Google Scholar 

  • Hrecka, K. et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474, 658–661 (2011).

    Article  CAS  Google Scholar 

  • Laguette, N. et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654–657 (2011).

    Article  CAS  Google Scholar 

  • Doyle, T., Goujon, C. & Malim, M. H. HIV-1 and interferons: who’s interfering with whom? Nat. Rev. Microbiol. 13, 403–413 (2015).

    Article  CAS  Google Scholar 

  • Shaw, A. E. et al. Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses. PLoS Biol. 15, e2004086 (2017).

    Article  Google Scholar 

  • Carpenter, S., Ricci, E. P., Mercier, B. C., Moore, M. J. & Fitzgerald, K. A. Post-transcriptional regulation of gene expression in innate immunity. Nat. Rev. Immunol. 14, 361–376 (2014).

    Article  CAS  Google Scholar 

  • Mino, T. & Takeuchi, O. Post-transcriptional regulation of cytokine mRNA controls the initiation and resolution of inflammation. Biotechnol. Genet. Eng. Rev. 29, 49–60 (2013).

    Article  CAS  Google Scholar 

  • Gao, G., Guo, X. & Goff, S. P. Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein. Science 297, 1703–1706 (2002).

    Article  CAS  Google Scholar 

  • Zhu, Y. et al. Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation. Proc. Natl Acad. Sci. USA 108, 15834–15839 (2011).

    Article  CAS  Google Scholar 

  • Takata, M. A. et al. CG dinucleotide suppression enables antiviral defence targeting non-self RNA. Nature 550, 124–127 (2017).

    Article  CAS  Google Scholar 

  • Goldstone, D. C. et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480, 379–382 (2011).

    Article  CAS  Google Scholar 

  • Liu, S. et al. MCPIP1 restricts HIV infection and is rapidly degraded in activated CD4+ T cells. Proc. Natl Acad. Sci. USA 110, 19083–19088 (2013).

    Article  CAS  Google Scholar 

  • Gerstberger, S., Hafner, M. & Tuschl, T. A census of human RNA-binding proteins. Nat. Rev. Genet. 15, 829–845 (2014).

    Article  CAS  Google Scholar 

  • Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    Article  CAS  Google Scholar 

  • Baldauf, H. M. et al. SAMHD1 restricts HIV-1 infection in resting CD4+ T cells. Nat. Med. 18, 1682–1687 (2012).

    Article  CAS  Google Scholar 

  • Descours, B. et al. SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4+T-cells. Retrovirology 9, 87 (2012).

    Article  CAS  Google Scholar 

  • Murillas, R., Simms, K. S., Hatakeyama, S., Weissman, A. M. & Kuehn, M. R. Identification of developmentally expressed proteins that functionally interact with Nedd4 ubiquitin ligase. J. Biol. Chem. 277, 2897–2907 (2002).

    Article  CAS  Google Scholar 

  • Sharma, P., Murillas, R., Zhang, H. & Kuehn, M. R. N4BP1 is a newly identified nucleolar protein that undergoes SUMO-regulated polyubiquitylation and proteasomal turnover at promyelocytic leukemia nuclear bodies. J. Cell Sci. 123, 1227–1234 (2010).

    Article  CAS  Google Scholar 

  • Marco, A. & Marin, I. CGIN1: a retroviral contribution to mammalian genomes. Mol. Biol. Evol. 26, 2167–2170 (2009).

    Article  CAS  Google Scholar 

  • Thome, M. Multifunctional roles for MALT1 in T-cell activation. Nat. Rev. Immunol. 8, 495–500 (2008).

    Article  CAS  Google Scholar 

  • Uehata, T. et al. Malt1-induced cleavage of regnase-1 in CD4+ helper T cells regulates immune activation. Cell 153, 1036–1049 (2013).

    Article  CAS  Google Scholar 

  • Jeltsch, K. M. et al. Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote TH17 differentiation. Nat. Immunol. 15, 1079–1089 (2014).

    Article  CAS  Google Scholar 

  • Jordan, A., Bisgrove, D. & Verdin, E. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J. 22, 1868–1877 (2003).

    Article  CAS  Google Scholar 

  • Kutsch, O., Benveniste, E. N., Shaw, G. M. & Levy, D. N. Direct and quantitative single-cell analysis of human immunodeficiency virus type 1 reactivation from latency. J. Virol. 76, 8776–8786 (2002).

    Article  CAS  Google Scholar 

  • Chan, J. K., Bhattacharyya, D., Lassen, K. G., Ruelas, D. & Greene, W. C. Calcium/calcineurin synergizes with prostratin to promote NF-kappaB dependent activation of latent HIV. PLoS ONE 8, e77749 (2013).

    Article  CAS  Google Scholar 

  • Li, H., He, H., Gong, L., Fu, M. & Wang, T. T. Preferential killing of HIV latently infected CD4+ T cells by MALT1 inhibitor. AIDS Res. Hum. Retrovir. 32, 174–177 (2016).

    Article  Google Scholar 

  • Michienzi, A., Cagnon, L., Bahner, I. & Rossi, J. J. Ribozyme-mediated inhibition of HIV 1 suggests nucleolar trafficking of HIV-1 RNA. Proc. Natl Acad. Sci. USA 97, 8955–8960 (2000).

    Article  CAS  Google Scholar 

  • Lusic, M. et al. Proximity to PML nuclear bodies regulates HIV-1 latency in CD4+ T cells. Cell Host Microbe 13, 665–677 (2013).

    Article  CAS  Google Scholar 

  • Nakagawa, M. et al. MALT1 contains nuclear export signals and regulates cytoplasmic localization of BCL10. Blood 106, 4210–4216 (2005).

    Article  CAS  Google Scholar 

  • Fu, M. & Blackshear, P. J. RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins. Nat. Rev. Immunol. 17, 130–143 (2017).

    Article  CAS  Google Scholar 

  • Takeuchi, O. Endonuclease Regnase-1/Monocyte chemotactic protein-1-induced protein-1 (MCPIP1) in controlling immune responses and beyond. Wiley Interdiscip. Rev. RNA 9, e1449 (2018).

    Article  Google Scholar 

  • Mino, T. et al. Regnase-1 and Roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 161, 1058–1073 (2015).

    Article  CAS  Google Scholar 

  • Adachi, A. et al. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J. Virol. 59, 284–291 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salazar-Gonzalez, J. F. et al. Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J. Exp. Med. 206, 1273–1289 (2009).

    Article  CAS  Google Scholar 

  • Salazar-Gonzalez, J. F. et al. Deciphering human immunodeficiency virus type 1 transmission and early envelope diversification by single-genome amplification and sequencing. J. Virol. 82, 3952–3970 (2008).

    Article  CAS  Google Scholar 

  • Van Heuverswyn, F. et al. Genetic diversity and phylogeographic clustering of SIVcpzPtt in wild chimpanzees in Cameroon. Virology 368, 155–171 (2007).

    Article  Google Scholar 

  • Fenton-May, A. E. et al. Relative resistance of HIV-1 founder viruses to control by interferon-alpha. Retrovirology 10, 146 (2013).

    Article  Google Scholar 

  • Parrish, N. F. et al. Phenotypic properties of transmitted founder HIV-1. Proc. Natl Acad. Sci. USA 110, 6626–6633 (2013).

    Article  CAS  Google Scholar 

  • Parrish, N. F. et al. Transmitted/founder and chronic subtype c HIV-1 use CD4 and CCR5 receptors with equal efficiency and are not inhibited by blocking the integrin alpha 4 beta 7. PLoS Pathog. 8, e1002686 (2012).

  • Mashiba, M., Collins, D. R., Terry, V. H. & Collins, K. L. Vpr overcomes macrophage-specific restriction of HIV-1 Env expression and virion production. Cell Host Microbe 16, 722–735 (2014).

    Article  CAS  Google Scholar 

  • McBride, M. S. & Panganiban, A. T. The human immunodeficiency virus type 1 encapsidation site is a multipartite RNA element composed of functional hairpin structures. J. Virol. 70, 2963–2973 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano, Y. et al. HIV-1 competition experiments in humanized mice show that APOBEC3H imposes selective pressure and promotes virus adaptation. PLoS Pathog. 13, e1006348 (2017).

    Article  Google Scholar 

  • Gringhuis, S. I. et al. HIV-1 blocks the signaling adaptor MAVS to evade antiviral host defense after sensing of abortive HIV-1 RNA by the host helicase DDX3. Nat. Immunol. 18, 225–235 (2017).

    Article  CAS  Google Scholar