nature.com

Infectious disease in an era of global change - Nature Reviews Microbiology

  • ️Metcalf, C. Jessica E.
  • ️Wed Oct 13 2021
  • Roeder, P., Mariner, J. & Kock, R. Rinderpest: the veterinary perspective on eradication. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120139 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Karesh, W. B. et al. Ecology of zoonoses: natural and unnatural histories. Lancet 380, 1936–1945 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Plowright, R. K. et al. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502–510 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, P. & Shi, Z.-L. SARS-CoV-2 spillover events. Science 371, 120–122 (2021).

    CAS  PubMed  Google Scholar 

  • Lloyd-Smith, J. O. et al. Epidemic dynamics at the human-animal interface. Science 326, 1362–1367 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brashares, J. S. et al. Bushmeat hunting, wildlife declines, and fish supply in West Africa. Science 306, 1180–1183 (2004).

    CAS  PubMed  Google Scholar 

  • Parashar, U. D. et al. Case-control study of risk factors for human infection with a new zoonotic paramyxovirus, Nipah Virus, during a 1998–1999 outbreak of severe encephalitis in Malaysia. J. Infect. Dis. 181, 1755–1759 (2000).

    CAS  PubMed  Google Scholar 

  • Field, H. et al. The natural history of Hendra and Nipah viruses. Microbes Infect. 3, 307–314 (2001).

    CAS  PubMed  Google Scholar 

  • Pitzer, V. E. et al. High turnover drives prolonged persistence of influenza in managed pig herds. J. R. Soc. Interface 13, 20160138 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Jones, B. A. et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl Acad. Sci. USA 110, 8399–8404 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Boeckel, T. et al. Global trends in antimicrobial resistance in animals in low-and middle-income countries. Int. J. Infect. Dis. 101, 19 (2020).

    Google Scholar 

  • Rimoin, A. W. et al. Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc. Natl Acad. Sci. USA 107, 16262–16267 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aw, D., Silva, A. B. & Palmer, D. B. Immunosenescence: emerging challenges for an ageing population. Immunology 120, 435–446 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolich-Žugich, J. The twilight of immunity: emerging concepts in aging of the immune system. Nat. Immunol. 19, 10–19 (2018).

    PubMed  Google Scholar 

  • Laxminarayan, R. et al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 13, 1057–1098 (2013).

    PubMed  Google Scholar 

  • Talisuna, A. O., Bloland, P. & D’Alessandro, U. History, dynamics, and public health importance of malaria parasite resistance. Clin. Microbiol. Rev. 17, 235–254 (2004).

    PubMed  PubMed Central  Google Scholar 

  • Carlson, C. J. et al. Climate change will drive novel cross-species viral transmission. Preprint at bioRxiv https://doi.org/10.1101/2020.01.24.918755 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Patz, J. A., Epstein, P. R., Burke, T. A. & Balbus, J. M. Global climate change and emerging infectious diseases. JAMA 275, 217–223 (1996).

    CAS  PubMed  Google Scholar 

  • Martin, G. et al. Climate change could increase the geographic extent of Hendra virus spillover risk. Ecohealth 15, 509–525 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Yuen, K. Y. et al. Hendra virus: epidemiology dynamics in relation to climate change, diagnostic tests and control measures. One Health 12, 100207 (2021). Martin et al. (2018) and Yuen et al. (2021) detail the link between climate change and recent Hendra virus spillover.

    PubMed  Google Scholar 

  • Brook, C. E. et al. Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence. eLife 9, e48401 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gubler, D. J. Dengue, urbanization and globalization: the unholy trinity of the 21st century. Trop. Med. Health 39, S3–S11 (2011).

    Google Scholar 

  • Li, Y. et al. Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship. PLoS Negl. Trop. Dis. 8, e3301 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Rose, N. H. et al. Climate and Urbanization drive mosquito preference for humans. Curr. Biol. 30, 3570–3579.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tatem, A. J., Gething, P. W., Smith, D. L. & Hay, S. I. Urbanization and the global malaria recession. Malar. J. 12, 133 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Mahmud, A. S., Metcalf, C. J. E. & Grenfell, B. T. Comparative dynamics, seasonality in transmission, and predictability of childhood infections in Mexico. Epidemiol. Infect. 145, 607–625 (2017).

    CAS  PubMed  Google Scholar 

  • Salje, H. et al. How social structures, space, and behaviors shape the spread of infectious diseases using chikungunya as a case study. Proc. Natl Acad. Sci. USA 113, 13420–13425 (2016). This article shows how interactions between the characteristics of an individual and that individual’s environment contribute to disease dynamics.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pitzer, V. E. et al. Demographic variability, vaccination, and the spatiotemporal dynamics of rotavirus epidemics. Science 325, 290–294 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Earn, D. J., Rohani, P., Bolker, B. M. & Grenfell, B. T. A simple model for complex dynamical transitions in epidemics. Science 287, 667–670 (2000).

    CAS  PubMed  Google Scholar 

  • Ferrari, M. J., Grenfell, B. T. & Strebel, P. M. Think globally, act locally: the role of local demographics and vaccination coverage in the dynamic response of measles infection to control. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120141 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, C. N. et al. The impact of environmental and climatic variation on the spatiotemporal trends of hospitalized pediatric diarrhea in Ho Chi Minh City, Vietnam. Health Place. 35, 147–154 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Baker, R. E. et al. Epidemic dynamics of respiratory syncytial virus in current and future climates. Nat. Commun. 10, 5512 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wesolowski, A. et al. Multinational patterns of seasonal asymmetry in human movement influence infectious disease dynamics. Nat. Commun. 8, 2069 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Graham, M. et al. Measles and the canonical path to elimination. Science 364, 584–587 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings, D. A. T. et al. The impact of the demographic transition on dengue in Thailand: insights from a statistical analysis and mathematical modeling. PLoS Med. 6, e1000139 (2009).

    PubMed  PubMed Central  Google Scholar 

  • Metcalf, C. J. E. et al. Structured models of infectious disease: inference with discrete data. Theor. Popul. Biol. 82, 275–282 (2012).

    CAS  PubMed  Google Scholar 

  • Cevik, M. et al. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe 2, e13–e22 (2021).

    CAS  PubMed  Google Scholar 

  • Dalziel, B. D. et al. Urbanization and humidity shape the intensity of influenza epidemics in U.S. cities. Science 362, 75–79 (2018). This study describes distinct patterns of influenza outbreaks in urban locations.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rader, B. et al. Crowding and the shape of COVID-19 epidemics. Nat. Med. 26, 1829–1834 (2020).

    CAS  PubMed  Google Scholar 

  • Kwan, C. K. & Ernst, J. D. HIV and tuberculosis: a deadly human syndemic. Clin. Microbiol. Rev. 24, 351–376 (2011).

    PubMed  PubMed Central  Google Scholar 

  • Nkuo-Akenji, T. K., Chi, P. C., Cho, J. F., Ndamukong, K. K. J. & Sumbele, I. Malaria and helminth co-infection in children living in a malaria endemic setting of mount Cameroon and predictors of anemia. J. Parasitol. 92, 1191–1195 (2006).

    PubMed  Google Scholar 

  • Hartmann, W. et al. Helminth infections suppress the efficacy of vaccination against seasonal influenza. Cell Rep. 29, 2243–2256.e4 (2019).

    CAS  PubMed  Google Scholar 

  • Mahmud, A. S., Martinez, P. P., He, J. & Baker, R. E. The impact of climate change on vaccine-preventable diseases: insights from current research and new directions. Curr. Env. Health Rep. 7, 384–391 (2020).

    Google Scholar 

  • Baker, R. E., Yang, W., Vecchi, G. A., Metcalf, C. J. E. & Grenfell, B. T. Assessing the influence of climate on wintertime SARS-CoV-2 outbreaks. Nat. Commun. 12, 846 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamerius, J. D. et al. Environmental predictors of seasonal influenza epidemics across temperate and tropical climates. PLoS Pathog. 9, e1003194 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Viboud, C., Alonso, W. J. & Simonsen, L. Influenza in tropical regions. PLoS Med. 3, e89 (2006).

    PubMed  PubMed Central  Google Scholar 

  • Baker, R. E. et al. Implications of climatic and demographic change for seasonal influenza dynamics and evolution. Preprint at medRxiv https://doi.org/10.1101/2021.02.11.21251601 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciencewicki, J. & Jaspers, I. Air pollution and respiratory viral infection. Inhal. Toxicol. 19, 1135–1146 (2007).

    CAS  PubMed  Google Scholar 

  • Bell, M. L. & Ebisu, K. Environmental inequality in exposures to airborne particulate matter components in the United States. Environ. Health Perspect. 120, 1699–1704 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorris, M. E., Treseder, K. K., Zender, C. S. & Randerson, J. T. Expansion of coccidioidomycosis endemic regions in the United States in response to climate change. Geohealth 3, 308–327 (2019). This study is one of the first to describe the link between climate change and valley fever.

    PubMed  PubMed Central  Google Scholar 

  • Du, H. et al. Candida auris: epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog. 16, e1008921 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casadevall, A., Kontoyiannis, D. P. & Robert, V. On the emergence of Candida auris: climate change, azoles, swamps, and birds. mBio 10, e01397 (2019).

    PubMed  PubMed Central  Google Scholar 

  • Colwell, R. R. Global climate and infectious disease: the cholera paradigm. Science 274, 2025–2031 (1996).

    CAS  PubMed  Google Scholar 

  • Koelle, K., Rodó, X., Pascual, M., Yunus, M. & Mostafa, G. Refractory periods and climate forcing in cholera dynamics. Nature 436, 696–700 (2005). This study highlights the importance of the interplay between intrinsic (temporary immunity) and extrinsic (climatic variability) factors in determining disease dynamics.

    CAS  PubMed  Google Scholar 

  • Mordecai, E. A. et al. Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Negl. Trop. Dis. 11, e0005568 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Rocklöv, J. & Dubrow, R. Author correction: climate change: an enduring challenge for vector-borne disease prevention and control. Nat. Immunol. 21, 695 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Brady, O. J. et al. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasit. Vectors 7, 338 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Kraemer, M. U. G. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4, e08347 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Hales, S., de Wet, N., Maindonald, J. & Woodward, A. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360, 830–834 (2002).

    PubMed  Google Scholar 

  • Wagner, C. E. et al. Climatological, virological and sociological drivers of current and projected dengue fever outbreak dynamics in Sri Lanka. J. R. Soc. Interface 17, 20200075 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Couper, L. I., MacDonald, A. J. & Mordecai, E. A. Impact of prior and projected climate change on US Lyme disease incidence. Glob. Chang. Biol. 27, 738–754 (2021).

    PubMed  Google Scholar 

  • Ryan, S. J. et al. Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050. Glob. Chang. Biol. 27, 84–93 (2021).

    PubMed  Google Scholar 

  • Ryan, S. J., Lippi, C. A. & Zermoglio, F. Shifting transmission risk for malaria in Africa with climate change: a framework for planning and intervention. Malar. J. 19, 170 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Li, X. et al. Estimating the health impact of vaccination against ten pathogens in 98 low-income and middle-income countries from 2000 to 2030: a modelling study. Lancet 397, 398–408 (2021).

    PubMed  PubMed Central  Google Scholar 

  • Mensah, K. et al. Seasonal gaps in measles vaccination coverage in Madagascar. Vaccine 37, 2511–2519 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Metcalf, C. J. E. et al. Use of serological surveys to generate key insights into the changing global landscape of infectious disease. Lancet 388, 728–730 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Crépey, P. & Barthélemy, M. Detecting robust patterns in the spread of epidemics: a case study of influenza in the United States and France. Am. J. Epidemiol. 166, 1244–1251 (2007).

    PubMed  Google Scholar 

  • Brownstein, J. S., Wolfe, C. J. & Mandl, K. D. Empirical evidence for the effect of airline travel on inter-regional influenza spread in the United States. PLoS Med. 3, e401 (2006).

    PubMed  PubMed Central  Google Scholar 

  • Tayoun, A. A. et al. Multiple early introductions of SARS-CoV-2 into a global travel hub in the Middle East. Sci. Rep. 10, 17720 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, X. et al. Genomic surveillance reveals multiple introductions of SARS-CoV-2 into northern California. Science 369, 582–587 (2020).

    CAS  PubMed  Google Scholar 

  • Candido, D. S. et al. Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science 369, 1255–1260 (2020).

    CAS  PubMed  Google Scholar 

  • Lounibos, L. P. Invasions by insect vectors of human disease. Annu. Rev. Entomol. 47, 233–266 (2002).

    CAS  PubMed  Google Scholar 

  • Tatem, A. J., Hay, S. I. & Rogers, D. J. Global traffic and disease vector dispersal. Proc. Natl Acad. Sci. USA 103, 6242–6247 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Killeen, G. F., Fillinger, U., Kiche, I., Gouagna, L. C. & Knols, B. G. J. Eradication of Anopheles gambiae from Brazil: lessons for malaria control in Africa? Lancet Infect. Dis. 2, 618–627 (2002).

    PubMed  Google Scholar 

  • Tatem, A. J. et al. Air travel and vector-borne disease movement. Parasitology 139, 1816–1830 (2012).

    CAS  PubMed  Google Scholar 

  • Huang, Z. & Tatem, A. J. Global malaria connectivity through air travel. Malar. J. 12, 269 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Purse, B. V., Rogers, D. J., Mellor, P. S., Baylis, M. & Mertens, P. P. C. Bluetongue virus and climate change. in Bluetongue (eds Mellor, P. S., Baylis, M. & Mertens, P. P. C.) 343–364 (Elsevier, 2009). This study describes the role of climate change in the geographical expansion of bluetongue epidemics.

  • Massad, E. et al. On the origin and timing of Zika virus introduction in Brazil. Epidemiol. Infect. 145, 2303–2312 (2017).

    CAS  PubMed  Google Scholar 

  • Kilpatrick, A. M. Globalization, land use, and the invasion of West Nile virus. Science 334, 323–327 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mordecai, E. A., Caldwell, J. M. & Grossman, M. K. Thermal biology of mosquito-borne disease. Ecol. Lett. 22, 1690–1708 (2019).

    PubMed  PubMed Central  Google Scholar 

  • United Nations. World Population Prospects 2019 (2019).

  • Wrathall, D. J. et al. Meeting the looming policy challenge of sea-level change and human migration. Nat. Clim. Chang. 9, 898–901 (2019).

    Google Scholar 

  • Gushulak, B. D. & MacPherson, D. W. Globalization of infectious diseases: the impact of migration. Clin. Infect. Dis. 38, 1742–1748 (2004).

    PubMed  Google Scholar 

  • Soto, S. M. Human migration and infectious diseases. Clin. Microbiol. Infect. 15 (Suppl. 1), 26–28 (2009).

    PubMed  PubMed Central  Google Scholar 

  • Monge-Maillo, B. et al. Imported infectious diseases in mobile populations, Spain. Emerg. Infect. Dis. 15, 1745–1752 (2009).

    PubMed  PubMed Central  Google Scholar 

  • Castelli, F. & Sulis, G. Migration and infectious diseases. Clin. Microbiol. Infect. 23, 283–289 (2017).

    CAS  PubMed  Google Scholar 

  • Bhatia, A. et al. The Rohingya in Cox’s Bazar: when the stateless seek refuge. Health Hum. Rights 20, 105–122 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Chin, T., Buckee, C. O. & Mahmud, A. S. Quantifying the success of measles vaccination campaigns in the Rohingya refugee camps. Epidemics 30, 100385 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Wesolowski, A., Buckee, C. O., Engø-Monsen, K. & Metcalf, C. J. E. Connecting mobility to infectious diseases: the promise and limits of mobile phone data. J. Infect. Dis. 214, S414–S420 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Chang, S. et al. Mobility network models of COVID-19 explain inequities and inform reopening. Nature 589, 82–87 (2021). This study uses high-resolution mobility data to explain inequities in COVID-19 burden.

    CAS  PubMed  Google Scholar 

  • Wesolowski, A. et al. Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proc. Natl Acad. Sci. USA 112, 11887–11892 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmud, A. S. et al. Megacities as drivers of national outbreaks: The 2017 chikungunya outbreak in Dhaka, Bangladesh. PLoS Negl. Trop. Dis. 15, e0009106 (2021).

    PubMed  PubMed Central  Google Scholar 

  • Buckee, C. O. et al. Aggregated mobility data could help fight COVID-19. Science 368, 145–146 (2020).

    PubMed  Google Scholar 

  • Perrings, C. Options for managing the infectious animal and plant disease risks of international trade. Food Security 8, 27–35 (2016).

    Google Scholar 

  • Smith, K. F. et al. Ecology. Reducing the risks of the wildlife trade. Science 324, 594–595 (2009).

    CAS  PubMed  Google Scholar 

  • Perrings, C., Levin, S. & Daszak, P. The economics of infectious disease, trade and pandemic risk. Ecohealth 15, 241–243 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Pavlin, B. I., Schloegel, L. M. & Daszak, P. Risk of importing zoonotic diseases through wildlife trade, United States. Emerg. Infect. Dis. J. 15, 1721 (2009).

    Google Scholar 

  • Santini, A., Liebhold, A., Migliorini, D. & Woodward, S. Tracing the role of human civilization in the globalization of plant pathogens. ISME J. 12, 647–652 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Levine, J. M. & D’Antonio, C. M. Forecasting biological invasions with increasing international trade. Conserv. Biol. 17, 322–326 (2003). This article gives a quantitative forecast of the impact of international trade on the introduction of plant pathogens.

    Google Scholar 

  • Parker, I. M. & Gilbert, G. S. The evolutionary ecology of novel plant-pathogen interactions. Annu. Rev. Ecol. Evol. Syst. 35, 675–700 (2004).

    Google Scholar 

  • Landa, B. B. et al. Emergence of a plant pathogen in Europe associated with multiple intercontinental introductions. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01521-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Frisullo, S., Camele, I., Agosteo, G. E., Boscia, D. & Martelli, G. P. Brief historical account of olive leaf scorch (‘brusca’) in the Salento Peninsula of Italy and state-of-the-art of the olive quick decline syndrome. J. Plant. Pathol. 96, 441–449 (2014).

    Google Scholar 

  • Coutinho, T. A., Wingfield, M. J., Alfenas, A. C. & Crous, P. W. Eucalyptus rust: a disease with the potential for serious international implications. Plant. Dis. 82, 819–825 (1998).

    CAS  PubMed  Google Scholar 

  • Shoemaker, T. et al. Genetic analysis of viruses associated with emergence of Rift Valley fever in Saudi Arabia and Yemen, 2000-01. Emerg. Infect. Dis. 8, 1415–1420 (2002).

    PubMed  PubMed Central  Google Scholar 

  • Lancelot, R. et al. Drivers of Rift Valley fever epidemics in Madagascar. Proc. Natl Acad. Sci. USA 114, 938–943 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costard, S., Mur, L., Lubroth, J., Sanchez-Vizcaino, J. M. & Pfeiffer, D. U. Epidemiology of African swine fever virus. Virus Res. 173, 191–197 (2013).

    CAS  PubMed  Google Scholar 

  • Rowlands, R. J. et al. African swine fever virus isolate, Georgia, 2007. Emerg. Infect. Dis. 14, 1870–1874 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mighell, E. & Ward, M. P. African swine fever spread across Asia, 2018-2019. Transbound. Emerg. Dis. https://doi.org/10.1111/tbed.14039 (2021).

    Article  PubMed  Google Scholar 

  • European Food Safety Authority (EFSA). et al. Epidemiological analysis of African swine fever in the European Union (September 2019 to August 2020). EFSA J. 19, e06572 (2021).

    Google Scholar 

  • Abanto, M., Gavilan, R. G., Baker-Austin, C., Gonzalez-Escalona, N. & Martinez-Urtaza, J. Global expansion of Pacific Northwest Vibrio parahaemolyticus sequence type 36. Emerg. Infect. Dis. 26, 323–326 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Martinez-Urtaza, J. et al. Genomic variation and evolution of ´Vibrio parahaemolyticus ST36 over the course of a transcontinental epidemic expansion. mBio https://doi.org/10.1128/mBio.01425-17 (2017). Abanto et al. (2020) and Martinez-Urtaza et al. (2017) discuss how global trade and climate change have led to the expansion of V. parahaemolyticus.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher, M. C. & Garner, T. W. J. Chytrid fungi and global amphibian declines. Nat. Rev. Microbiol. 18, 332–343 (2020).

    CAS  PubMed  Google Scholar 

  • Knight-Jones, T. J. D. & Rushton, J. The economic impacts of foot and mouth disease - what are they, how big are they and where do they occur? Prev. Vet. Med. 112, 161–173 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson, T. P. et al. Antibiotic resistance: mitigation opportunities in livestock sector development. Animal 11, 1–3 (2017).

    CAS  PubMed  Google Scholar 

  • Pulliam, J. R. C. et al. Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis. J. R. Soc. Interface 9, 89–101 (2012).

    PubMed  Google Scholar 

  • Rambaut, A. et al. The genomic and epidemiological dynamics of human influenza A virus. Nature 453, 615–619 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen, B. et al. Global patterns of influenza a virus in wild birds. Science 312, 384–388 (2006).

    CAS  PubMed  Google Scholar 

  • Li, Y. et al. Continued evolution of H5N1 influenza viruses in wild birds, domestic poultry, and humans in China from 2004 to 2009. J. Virol. 84, 8389–8397 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Food and Agriculture Organization of the United Nations. Drivers, Dynamics and Epidemiology of Antimicrobial Resistance in Animal Production. (Food and Agriculture Organization, 2018).

  • Metcalf, C. J. E. et al. Transport networks and inequities in vaccination: remoteness shapes measles vaccine coverage and prospects for elimination across Africa. Epidemiol. Infect. 143, 1457–1466 (2015).

    CAS  PubMed  Google Scholar 

  • Hotez, P. J. Globalists versus nationalists: bridging the divide through blue marble health. PLoS Negl. Trop. Dis. 13, e0007156 (2019).

    PubMed  PubMed Central  Google Scholar 

  • Antràs, P. De-globalisation? Global value chains in the post-COVID-19 age. National Bureau of Economic Research https://www.nber.org/papers/w28115 (2020).

  • Burton, D. R. & Topol, E. J. Variant-proof vaccines — invest now for the next pandemic. Nature https://doi.org/10.1038/d41586-021-00340-4 (2021).

    Article  PubMed  Google Scholar 

  • Hay, J. A. et al. Estimating epidemiologic dynamics from cross-sectional viral load distributions. Science https://doi.org/10.1126/science.abh0635 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner, D. M. et al. Yersinia pestis and the Plague of Justinian 541–543 AD: a genomic analysis. Lancet Infect. Dis. 14, 319–326 (2014).

    PubMed  Google Scholar 

  • Alfani, G. & Murphy, T. E. Plague and lethal epidemics in the pre-industrial world. J. Econ. Hist. 77, 314–343 (2017).

    Google Scholar 

  • Harper, K. Pandemics and passages to late antiquity: rethinking the plague of c. 249–270 described by Cyprian. J. Rom. Archaeol. 28, 223–260 (2015).

    Google Scholar 

  • Duncan-Jones, R. P. The impact of the Antonine plague. J. Rom. Archaeol. 9, 108–136 (1996).

    Google Scholar 

  • Molina-Cruz, A., Zilversmit, M. M., Neafsey, D. E., Hartl, D. L. & Barillas-Mury, C. Mosquito vectors and the globalization of Plasmodium falciparum malaria. Annu. Rev. Genet. 50, 447–465 (2016).

    CAS  PubMed  Google Scholar 

  • Guan, Y. et al. Molecular epidemiology of the novel coronavirus that causes severe acute respiratory syndrome. Lancet 363, 99–104 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tatem, A. J. Mapping population and pathogen movements. Int. Health 6, 5–11 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Gao, J. Global 1-km downscaled population base year and projection grids based on the shared socioeconomic pathways, revision 01. NASA Socioeconomic Data and Applications Center (SEDAC) https://doi.org/10.7927/q7z9-9r69 (2020).

    Article  Google Scholar 

  • Miller, I. F. & Metcalf, C. J. E. Evolving resistance to pathogens. Science 363, 1277–1278 (2019).

    CAS  PubMed  Google Scholar 

  • Park, M., Loverdo, C., Schreiber, S. J. & Lloyd-Smith, J. O. Multiple scales of selection influence the evolutionary emergence of novel pathogens. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120333 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Kemp, S. A. et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature 592, 277–282 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan, J., Thrall, P. H., Papaïx, J., Xie, L. & Burdon, J. J. Playing on a pathogen’s weakness: using evolution to guide sustainable plant disease control strategies. Annu. Rev. Phytopathol. 53, 19–43 (2015).

    CAS  PubMed  Google Scholar 

  • Olival, K. J. et al. Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: a case study of bats. PLoS Pathog. 16, e1008758 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oude Munnink, B. B. et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371, 172–177 (2021).

    CAS  PubMed  Google Scholar 

  • Shaw, L. P. et al. The phylogenetic range of bacterial and viral pathogens of vertebrates. Mol. Ecol. 29, 3361–3379 (2020).

    PubMed  Google Scholar 

  • Gilbert, G. S. & Webb, C. O. Phylogenetic signal in plant pathogen–host range. Proc. Natl Acad. Sci. USA 104, 4979–4983 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson, A. K. & Nguyen, A. E. Does genetic diversity protect host populations from parasites? A meta-analysis across natural and agricultural systems. Evol. Lett. 5, 16–32 (2021).

    PubMed  Google Scholar 

  • Rigling, D. & Prospero, S. Cryphonectria parasitica, the causal agent of chestnut blight: invasion history, population biology and disease control. Mol. Plant. Pathol. 19, 7–20 (2018).

    CAS  PubMed  Google Scholar 

  • Gandon, S., Mackinnon, M. J., Nee, S. & Read, A. F. Imperfect vaccines and the evolution of pathogen virulence. Nature 414, 751–756 (2001).

    CAS  PubMed  Google Scholar 

  • Miller, I. F. & Metcalf, C. J. Vaccine-driven virulence evolution: consequences of unbalanced reductions in mortality and transmission and implications for pertussis vaccines. J. R. Soc. Interface 16, 20190642 (2019).

    PubMed  PubMed Central  Google Scholar 

  • Fraser, C., Riley, S., Anderson, R. M. & Ferguson, N. M. Factors that make an infectious disease outbreak controllable. Proc. Natl Acad. Sci. USA 101, 6146–6151 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-On, Y. M., Flamholz, A., Phillips, R. & Milo, R. Science forum: SARS-CoV-2 (COVID-19) by the numbers. eLife 9, e57309 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Hollingsworth, T. D., Ferguson, N. M. & Anderson, R. M. Will travel restrictions control the international spread of pandemic influenza? Nat. Med. 12, 497–499 (2006).

    CAS  PubMed  Google Scholar 

  • Dhillon, R. S., Srikrishna, D. & Sachs, J. Controlling Ebola: next steps. Lancet 384, 1409–1411 (2014).

    PubMed  Google Scholar 

  • Hellewell, J. et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob. Health 8, e488–e496 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Xu, G. J. et al. Viral immunology. Comprehensive serological profiling of human populations using a synthetic human virome. Science 348, aaa0698 (2015). This study presents a highly multiplexed, peptide-level serological assay to characterize prior exposure to all known viruses.

    PubMed  PubMed Central  Google Scholar 

  • Takahashi, S., Greenhouse, B. & Rodríguez-Barraquer, I. Are SARS-CoV-2 seroprevalence estimates biased? J. Infect. Dis. https://doi.org/10.1093/infdis/jiaa523 (2020).

    Article  PubMed  Google Scholar 

  • The Lancet. Genomic sequencing in pandemics. Lancet 397, 445 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • COVID-19 Genomics UK (COG-UK) consortiumcontact@cogconsortium.uk. An integrated national scale SARS-CoV-2 genomic surveillance network. Lancet Microbe 1, e99–e100 (2020).

    Google Scholar 

  • Inzaule, S. C., Tessema, S. K., Kebede, Y. & Ouma, A. E. O. Genomic-informed pathogen surveillance in Africa: opportunities and challenges. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(20)30939-7 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 349, 255–260 (2015).

    CAS  PubMed  Google Scholar 

  • Holmes, E. C. What can we predict about viral evolution and emergence? Curr. Opin. Virol. 3, 180–184 (2013).

    PubMed  Google Scholar 

  • Carlson, C. J. From PREDICT to prevention, one pandemic later. Lancet Microbe 1, e6–e7 (2020).

    PubMed  PubMed Central  Google Scholar