nature.com

Cellular functions of the protein kinase ATM and their relevance to human disease - Nature Reviews Molecular Cell Biology

  • ️Paull, Tanya T.
  • ️Tue Aug 24 2021
  • Rothblum-Oviatt, C. et al. Ataxia telangiectasia: a review. Orphanet J. Rare Dis. 11, 159 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Shiloh, Y. & Ziv, Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 14, 197–210 (2013).

    CAS  PubMed  Google Scholar 

  • Concannon, P. & Gatti, R. A. Diversity of ATM gene mutations detected in patients with ataxia-telangiectasia. Hum. Mutat. 10, 100–107 (1997).

    CAS  PubMed  Google Scholar 

  • Lovejoy, C. A. & Cortez, D. Common mechanisms of PIKK regulation. DNA Repair. 8, 1004–1008 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paull, T. T. Mechanisms of ATM activation. Annu. Rev. Biochem. 84, 711–738 (2015).

    CAS  PubMed  Google Scholar 

  • Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).

    CAS  PubMed  Google Scholar 

  • Bensimon, A. et al. ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage. Sci. Signal. 3, rs3 (2010).

    CAS  PubMed  Google Scholar 

  • Schlam-Babayov, S. et al. Phosphoproteomics reveals novel modes of function and inter-relationships among PIKKs in response to genotoxic stress. EMBO J. 40, e104400 (2021).

    PubMed  Google Scholar 

  • Lavin, M. F. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat. Rev. Mol. Cell Biol. 9, 759–769 (2008).

    CAS  PubMed  Google Scholar 

  • Zhang, Y. et al. Mitochondrial redox sensing by the kinase ATM maintains cellular antioxidant capacity. Sci. Signal. 11, eaaq0702 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Lee, J.-H. et al. ATM directs DNA damage responses and proteostasis via genetically separable pathways. Sci. Signal. 11, eaan5598 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Guo, Z., Kozlov, S., Lavin, M. F., Person, M. D. & Paull, T. T. ATM activation by oxidative stress. Science 330, 517–521 (2010).

    CAS  PubMed  Google Scholar 

  • Corcoles-Saez, I. et al. Essential function of Mec1, the budding yeast ATM/ATR checkpoint-response kinase, in protein homeostasis. Dev. Cell 46, 495–503.e2 (2018).

    CAS  PubMed  Google Scholar 

  • Cosentino, C., Grieco, D. & Costanzo, V. ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J. 30, 546–555 (2011).

    CAS  PubMed  Google Scholar 

  • Sharma, N. K. et al. Intrinsic mitochondrial DNA repair defects in ataxia telangiectasia. DNA Repair. 13, 22–31 (2014).

    CAS  PubMed  Google Scholar 

  • D’Souza, A. D., Parish, I. A., Krause, D. S., Kaech, S. M. & Shadel, G. S. Reducing mitochondrial ROS improves disease-related pathology in a mouse model of ataxia-telangiectasia. Mol. Ther. 21, 42–48 (2013).

    PubMed  Google Scholar 

  • Tresini, M. et al. The core spliceosome as target and effector of non-canonical ATM signalling. Nature 523, 53–58 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katzenberger, R. J., Marengo, M. S. & Wassarman, D. A. ATM and ATR pathways signal alternative splicing of Drosophila TAF1 pre-mRNA in response to DNA damage. Mol. Cell Biol. 26, 9256–9267 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar, A. et al. Ataxia telangiectasia mutated interacts with Parkin and induces mitophagy independent of kinase activity. Evidence from mantle cell lymphoma. Haematologica 106, 495–512 (2021).

    CAS  PubMed  Google Scholar 

  • Yates, L. A. et al. Cryo-EM structure of nucleotide-bound Tel1ATM unravels the molecular basis of inhibition and structural rationale for disease-associated mutations. Structure 28, 96–104.e3 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baretic´, D. et al. Structures of closed and open conformations of dimeric human ATM. Sci. Adv. 3, e1700933 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Jansma, M. et al. Near-complete structure and model of Tel1ATM from Chaetomium thermophilum reveals a robust autoinhibited ATP state. Structure 28, 83–95.e5 (2020).

    CAS  PubMed  Google Scholar 

  • Wang, X. et al. Structure of the intact ATM/Tel1 kinase. Nat. Commun. 7, 11655 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lau, W. C. Y. et al. Structure of the human dimeric ATM kinase. Cell Cycle 15, 1117–1124 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J. H. & Paull, T. T. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308, 551–554 (2005).

    CAS  PubMed  Google Scholar 

  • Uziel, T. et al. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 22, 5612–5621 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y. et al. Regulation of the DNA damage response by DNA-PKcs inhibitory phosphorylation of ATM. Mol. Cell 65, 91–104 (2017).

    CAS  PubMed  Google Scholar 

  • Sun, Y., Jiang, X., Chen, S., Fernandes, N. & Price, B. D. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc. Natl Acad. Sci. USA 102, 13182–13187 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Y., Xu, Y., Roy, K. & Price, B. D. DNA damage-induced acetylation of lysine 3016 of ATM activates ATM kinase activity. Mol. Cell Biol. 27, 8502–8509 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    CAS  PubMed  Google Scholar 

  • Kozlov, S. V. et al. Autophosphorylation and ATM activation: additional sites add to the complexity. J. Biol. Chem. 286, 9107–9119 (2010).

    PubMed  PubMed Central  Google Scholar 

  • Kozlov, S. V. et al. Involvement of novel autophosphorylation sites in ATM activation. EMBO J. 25, 3504–3514 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khoronenkova, S. V. Mechanisms of non-canonical activation of ataxia telangiectasia mutated. Biochem. Mosc. 81, 1669–1675 (2016).

    CAS  Google Scholar 

  • Khoronenkova, S. V. & Dianov, G. L. ATM prevents DSB formation by coordinating SSB repair and cell cycle progression. Proc. Natl Acad. Sci. USA 112, 3997–4002 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, C. P., Ban, Y., Lyu, Y. L. & Liu, L. F. Proteasome-dependent processing of topoisomerase I-DNA adducts into DNA double strand breaks at arrested replication forks. J. Biol. Chem. 284, 28084–28092 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sordet, O. et al. Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks. EMBO Rep. 10, 887–893 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sordet, O., Nakamura, A. J., Redon, C. E. & Pommier, Y. DNA double-strand breaks and ATM activation by transcription-blocking DNA lesions. Cell Cycle 9, 274–278 (2010).

    CAS  PubMed  Google Scholar 

  • Cristini, A. et al. DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions. Nucleic Acids Res. 44, 1161–1178 (2016).

    CAS  PubMed  Google Scholar 

  • Yang, C. et al. Aurora-B mediated ATM serine 1403 phosphorylation is required for mitotic ATM activation and the spindle checkpoint. Mol. Cell 44, 597–608 (2011).

    PubMed  PubMed Central  Google Scholar 

  • Yeo, A. J. et al. Impaired endoplasmic reticulum-mitochondrial signaling in ataxia-telangiectasia. iScience 24, 101972 (2021).

    CAS  PubMed  Google Scholar 

  • Chow, H.-M. et al. ATM is activated by ATP depletion and modulates mitochondrial function through NRF1. J. Cell Biol. 218, 909–928 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xin, J. et al. Structural basis of allosteric regulation of Tel1/ATM kinase. Cell Res. 29, 655–665 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, H. et al. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature 552, 368–373 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tubbs, A. & Nussenzweig, A. Endogenous DNA damage as a source of genomic instability in cancer. Cell 168, 644–656 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKinnon, P. J. Genome integrity and disease prevention in the nervous system. Genes Dev. 31, 1180–1194 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santivasi, W. L. & Xia, F. Ionizing radiation-induced DNA damage, response, and repair. Antioxid. Redox Signal. 21, 251–259 (2014).

    CAS  PubMed  Google Scholar 

  • Chatterjee, N. & Walker, G. C. Mechanisms of DNA damage, repair, and mutagenesis. Env. Mol. Mutagen. 58, 235–263 (2017).

    CAS  Google Scholar 

  • Stiff, T. et al. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 64, 2390–2396 (2004).

    CAS  PubMed  Google Scholar 

  • Wang, H., Wang, M., Wang, H., Böcker, W. & Iliakis, G. Complex H2AX phosphorylation patterns by multiple kinases including ATM and DNA-PK in human cells exposed to ionizing radiation and treated with kinase inhibitors. J. Cell Physiol. 202, 492–502 (2005).

    CAS  PubMed  Google Scholar 

  • Caron, P. et al. Non-redundant functions of ATM and DNA-PKcs in response to DNA double-strand breaks. Cell Rep. 13, 1598–1609 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burma, S., Chen, B. P., Murphy, M., Kurimasa, A. & Chen, D. J. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J. Biol. Chem. 276, 42462–42467 (2001).

    CAS  PubMed  Google Scholar 

  • Coster, G. & Goldberg, M. The cellular response to DNA damage: a focus on MDC1 and its interacting proteins. Nucleus 1, 166–178 (2010).

    PubMed  Google Scholar 

  • Wu, L., Luo, K., Lou, Z. & Chen, J. MDC1 regulates intra-S-phase checkpoint by targeting NBS1 to DNA double-strand breaks. Proc. Natl Acad. Sci. USA 105, 11200–11205 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melander, F. et al. Phosphorylation of SDT repeats in the MDC1 N terminus triggers retention of NBS1 at the DNA damage-modified chromatin. J. Cell Biol. 181, 213–226 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spycher, C. et al. Constitutive phosphorylation of MDC1 physically links the MRE11-RAD50-NBS1 complex to damaged chromatin. J. Cell Biol. 181, 227–240 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shiloh, Y. The cerebellar degeneration in ataxia-telangiectasia: a case for genome instability. DNA Repair. 95, 102950 (2020).

    CAS  PubMed  Google Scholar 

  • Blackford, A. N. & Jackson, S. P. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol. Cell 66, 801–817 (2017).

    CAS  PubMed  Google Scholar 

  • Symington, L. S. Mechanism and regulation of DNA end resection in eukaryotes. Crit. Rev. Biochem. Mol. Biol. 51, 195–212 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marechal, A. & Zou, L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb. Perspect. Biol. 5, a012716 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Kastan, M. B. & Lim, D. The many substrates and functions of ATM. Nat. Rev. Mol. Cell Biol. 1, 179–186 (2000).

    CAS  PubMed  Google Scholar 

  • Kowalczykowski, S. C. An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harb. Perspect. Biol. 7, a016410 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Sartori, A. A. et al. Human CtIP promotes DNA end resection. Nature 450, 509–514 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • You, Z. et al. CtIP links DNA double-strand break sensing to resection. Mol. Cell 36, 954–969 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H. et al. The interaction of CtIP and Nbs1 connects CDK and ATM to regulate HR-mediated double-strand break repair. PLoS Genet. 9, e1003277 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson, S. E. et al. Activation of DSB processing requires phosphorylation of CtIP by ATR. Mol. Cell 49, 657–667 (2013).

    CAS  PubMed  Google Scholar 

  • Bolderson, E. et al. Phosphorylation of Exo1 modulates homologous recombination repair of DNA double-strand breaks. Nucleic acids Res. 38, 1821–1831 (2010).

    CAS  PubMed  Google Scholar 

  • Ababou, M. et al. ATM-dependent phosphorylation and accumulation of endogenous BLM protein in response to ionizing radiation. Oncogene 19, 5955–5963 (2000).

    CAS  PubMed  Google Scholar 

  • Cortez, D., Wang, Y., Qin, J. & Elledge, S. J. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286, 1162–1166 (1999).

    CAS  PubMed  Google Scholar 

  • Xu, B., O’Donnell, A. H., Kim, S. T. & Kastan, M. B. Phosphorylation of serine 1387 in Brca1 is specifically required for the Atm-mediated S-phase checkpoint after ionizing irradiation. Cancer Res. 62, 4588–4591 (2002).

    CAS  PubMed  Google Scholar 

  • Gatei, M. et al. Role for ATM in DNA damage-induced phosphorylation of BRCA1. Cancer Res. 60, 3299–3304 (2000).

    CAS  PubMed  Google Scholar 

  • Ahlskog, J. K., Larsen, B. D., Achanta, K. & Sørensen, C. S. ATM/ATR-mediated phosphorylation of PALB2 promotes RAD51 function. EMBO Rep. 17, 671–681 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kijas, A. W. et al. ATM-dependent phosphorylation of MRE11 controls extent of resection during homology directed repair by signalling through exonuclease 1. Nucleic Acids Res. 43, 8352–8367 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Virgilio, M., Ying, C. Y. & Gautier, J. PIKK-dependent phosphorylation of Mre11 induces MRN complex inactivation by disassembly from chromatin. DNA Repair. 8, 1311–1320 (2009).

    PubMed  PubMed Central  Google Scholar 

  • Zhao, X. et al. Cell cycle-dependent control of homologous recombination. Acta Biochim. Biophys. Sin. 49, 655–668 (2017).

    CAS  PubMed  Google Scholar 

  • Aylon, Y., Liefshitz, B. & Kupiec, M. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J. 23, 4868–4875 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferretti, L. P., Lafranchi, L. & Sartori, A. A. Controlling DNA-end resection: a new task for CDKs. Front. Genet. 4, 99 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Simoneau, A., Robellet, X., Ladouceur, A.-M. & D’Amours, D. Cdk1-dependent regulation of the Mre11 complex couples DNA repair pathways to cell cycle progression. Cell Cycle 13, 1078–1090 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falck, J. et al. CDK targeting of NBS1 promotes DNA-end resection, replication restart and homologous recombination. EMBO Rep. 13, 561–568 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buis, J., Stoneham, T., Spehalski, E. & Ferguson, D. O. Mre11 regulates CtIP-dependent double-strand break repair by interaction with CDK2. Nat. Struct. Mol. Biol. 19, 246–252 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomimatsu, N. et al. Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice. Nat. Commun. 5, 3561 (2014).

    PubMed  Google Scholar 

  • Huertas, P., Cortes-Ledesma, F., Sartori, A. A., Aguilera, A. & Jackson, S. P. CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455, 689–692 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huertas, P. & Jackson, S. P. Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J. Biol. Chem. 284, 9558–9565 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, H. H. Y., Pannunzio, N. R., Adachi, N. & Lieber, M. R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18, 495–506 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, G. et al. Super-resolution imaging identifies PARP1 and the Ku complex acting as DNA double-strand break sensors. Nucleic Acids Res. 46, 3446–3457 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Britton, S., Coates, J. & Jackson, S. P. A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. J. Cell Biol. 202, 579–595 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jette, N. & Lees-Miller, S. P. The DNA-dependent protein kinase: A multifunctional protein kinase with roles in DNA double strand break repair and mitosis. Prog. Biophys. Mol. Biol. 117, 194–205 (2015).

    CAS  PubMed  Google Scholar 

  • Chen, B. P. et al. Ataxia telangiectasia mutated (ATM) is essential for DNA-PKcs phosphorylations at the Thr-2609 cluster upon DNA double strand break. J. Biol. Chem. 282, 6582–6587 (2007).

    CAS  PubMed  Google Scholar 

  • Riballo, E. et al. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol. Cell 16, 715–724 (2004).

    CAS  PubMed  Google Scholar 

  • Goodarzi, A. A. et al. DNA-PK autophosphorylation facilitates Artemis endonuclease activity. EMBO J. 25, 3880–3889 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imamichi, S., Sharma, M. K., Kamdar, R. P., Fukuchi, M. & Matsumoto, Y. Ionizing radiation-induced XRCC4 phosphorylation is mediated through ATM in addition to DNA-PK. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 90, 365–372 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, Y. et al. DNA-PK and ATM phosphorylation sites in XLF/Cernunnos are not required for repair of DNA double strand breaks. DNA Repair. 7, 1680–1692 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sastre-Moreno, G. et al. Regulation of human polλ by ATM-mediated phosphorylation during non-homologous end joining. DNA Repair. 51, 31–45 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mirman, Z. & de Lange, T. 53BP1: a DSB escort. Genes Dev. 34, 7–23 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bothmer, A. et al. Regulation of DNA end joining, resection, and immunoglobulin class switch recombination by 53BP1. Mol. Cell 42, 319–329 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman, J. R. et al. RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol. Cell 49, 858–871 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, L., Fong, K.-W., Wang, J., Wang, W. & Chen, J. RIF1 counteracts BRCA1-mediated end resection during DNA repair. J. Biol. Chem. 288, 11135–11143 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann, M., Lottersberger, F., Buonomo, S. B., Sfeir, A. & de Lange, T. 53BP1 regulates DSB repair using Rif1 to control 5′ end resection. Science 339, 700–704 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Virgilio, M. et al. Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching. Science 339, 711–715 (2013).

    PubMed  Google Scholar 

  • Callen, E. et al. 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions. Cell 153, 1266–1280 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balmus, G. et al. ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks. Nat. Commun. 10, 87 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura, K. et al. Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination. Mol. Cell 81, 1084–1099 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Britton, S. et al. ATM antagonizes NHEJ proteins assembly and DNA-ends synapsis at single-ended DNA double strand breaks. Nucleic Acids Res. 48, 9710–9723 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katsuki, Y., Jeggo, P. A., Uchihara, Y., Takata, M. & Shibata, A. DNA double-strand break end resection: a critical relay point for determining the pathway of repair and signaling. Genome Instab. Dis. 1, 155–171 (2020).

    Google Scholar 

  • Ceccaldi, R., Rondinelli, B. & D’Andrea, A. D. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 26, 52–64 (2016).

    CAS  PubMed  Google Scholar 

  • Deshpande, R. A. et al. DNA-dependent protein kinase promotes DNA end processing by MRN and CtIP. Sci. Adv. 6, eaay0922 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram, S. P. et al. Mechanistic modelling supports entwined rather than exclusively competitive DNA double-strand break repair pathway. Sci. Rep. 9, 6359 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kakarougkas, A. & Jeggo, P. A. DNA DSB repair pathway choice: an orchestrated handover mechanism. Br. J. Radiol. 87, 20130685 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pommier, Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer 6, 789–802 (2006).

    CAS  PubMed  Google Scholar 

  • Pommier, Y. Drugging topoisomerases: lessons and challenges. ACS Chem. Biol. 8, 82–95 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alagoz, M., Chiang, S. C., Sharma, A. & El-Khamisy, S. F. ATM deficiency results in accumulation of DNA-topoisomerase I covalent intermediates in neural cells. PLoS ONE 8, e58239 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katyal, S. et al. Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes. Nat. Neurosci. 17, 813–821 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das, B. B. et al. Optimal function of the DNA repair enzyme TDP1 requires its phosphorylation by ATM and/or DNA-PK. EMBO J. 28, 3667–3680 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang, S.-C., Carroll, J. & El-Khamisy, S. F. TDP1 serine 81 promotes interaction with DNA ligase IIIalpha and facilitates cell survival following DNA damage. Cell Cycle 9, 588–595 (2010).

    CAS  PubMed  Google Scholar 

  • Yamamoto, K. et al. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors. eLife 5, e14709 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Yamamoto, K. et al. Kinase-dead ATM protein causes genomic instability and early embryonic lethality in mice. J. Cell Biol. 198, 305–313 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel, J. A. et al. Loss of ATM kinase activity leads to embryonic lethality in mice. J. Cell Biol. 198, 295–304 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pommier, Y., Leo, E., Zhang, H. & Marchand, C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 17, 421–433 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pommier, Y. et al. Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2). DNA Repair 19, 114–129 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Álvarez-Quilón, A. et al. ATM specifically mediates repair of double-strand breaks with blocked DNA ends. Nat. Commun. 5, 3347 (2014).

    PubMed  Google Scholar 

  • Álvarez-Quilón, A. et al. Endogenous topoisomerase II-mediated DNA breaks drive thymic cancer predisposition linked to ATM deficiency. Nat. Commun. 11, 910 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Tamaichi, H. et al. Ataxia telangiectasia mutated-dependent regulation of topoisomerase II alpha expression and sensitivity to topoisomerase II inhibitor. Cancer Sci. 104, 178–184 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoa, N. N. et al. Mre11 Is essential for the removal of lethal topoisomerase 2 covalent cleavage complexes. Mol. Cell 64, 580–592 (2016).

    CAS  PubMed  Google Scholar 

  • Yamaguchi-Iwai, Y. et al. Mre11 is essential for the maintenance of chromosomal DNA in vertebrate cells. EMBO J. 18, 6619–6629 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, K. C. et al. MRE11 facilitates the removal of human topoisomerase II complexes from genomic DNA. Biol. Open 1, 863–873 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aparicio, T., Baer, R., Gottesman, M. & Gautier, J. MRN, CtIP, and BRCA1 mediate repair of topoisomerase II-DNA adducts. J. Cell Biol. 212, 399–408 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keeney, S. & Neale, M. J. Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation. Biochemical Soc. Trans. 34, 523–525 (2006).

    CAS  Google Scholar 

  • Chanut, P., Britton, S., Coates, J., Jackson, S. P. & Calsou, P. Coordinated nuclease activities counteract Ku at single-ended DNA double-strand breaks. Nat. Commun. 7, 12889 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Lee, J.-H., Ryu, S. W., Ender, N. A., Paull, T. T. & Paull, T. T. Poly-ADP-ribosylation drives loss of protein homeostasis in ATM and Mre11 deficiency. Mol. Cell 81, 1515–1533 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chou, W.-C. et al. Chk2-dependent phosphorylation of XRCC1 in the DNA damage response promotes base excision repair. EMBO J. 27, 3140–3150 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, B., Glover, J. N. & Weinfeld, M. Neurological disorders associated with DNA strand-break processing enzymes. Mech. Ageing Dev. 161, 130–140 (2017).

    CAS  PubMed  Google Scholar 

  • Hoch, N. C. et al. XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature 541, 87–91 (2017).

    CAS  PubMed  Google Scholar 

  • Yoon, G. & Caldecott, K. W. Nonsyndromic cerebellar ataxias associated with disorders of DNA single-strand break repair. Handb. Clin. Neurol. 155, 105–115 (2018).

    PubMed  Google Scholar 

  • Muñoz, M. J. et al. DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. Cell 137, 708–720 (2009).

    PubMed  Google Scholar 

  • Nicholls, C. D., Shields, M. A., Lee, P. W. K., Robbins, S. M. & Beattie, T. L. UV-dependent alternative splicing uncouples p53 activity and PIG3 gene function through rapid proteolytic degradation. J. Biol. Chem. 279, 24171–24178 (2004).

    CAS  PubMed  Google Scholar 

  • Su, C. et al. RUG3 and ATM synergistically regulate the alternative splicing of mitochondrial nad2 and the DNA damage response in Arabidopsis thaliana. Sci. Rep. 7, 43897 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Niehrs, C. & Luke, B. Regulatory R-loops as facilitators of gene expression and genome stability. Nat. Rev. Mol. Cell Biol. 21, 167–178 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo, A. J. et al. R-loops in proliferating cells but not in the brain: implications for AOA2 and other autosomal recessive ataxias. PLoS ONE 9, e90219 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Hamperl, S., Bocek, M. J., Saldivar, J. C., Swigut, T. & Cimprich, K. A. Transcription-replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses. Cell 170, 774–786.e19 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marabitti, V. et al. ATM pathway activation limits R-loop-associated genomic instability in Werner syndrome cells. Nucleic Acids Res. 47, 3485–3502 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sollier, J. et al. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol. Cell 56, 777–785 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuhara, T. et al. Human Rad52 promotes XPG-mediated R-loop processing to initiate transcription-associated homologous recombination repair. Cell 175, 558–570.e11 (2018).

    CAS  PubMed  Google Scholar 

  • Cristini, A. et al. Dual processing of R-Loops and topoisomerase I induces transcription-dependent DNA double-strand breaks. Cell Rep. 28, 3167–3181.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makharashvili, N. et al. Sae2/CtIP prevents R-loop accumulation in eukaryotic cells. eLife 7, e42733 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Yüce, Ö. & West, S. C. Senataxin, defective in the neurodegenerative disorder ataxia with oculomotor apraxia 2, lies at the interface of transcription and the DNA damage response. Mol. Cell. Biol. 33, 406–417 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Singh, A., Kukreti, R., Saso, L. & Kukreti, S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules 24, 1583 (2019).

    CAS  PubMed Central  Google Scholar 

  • Watts, M. E., Pocock, R. & Claudianos, C. Brain energy and oxygen metabolism: emerging role in normal function and disease. Front. Mol. Neurosci. 11, 216 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Gandhi, S. & Abramov, A. Y. Mechanism of oxidative stress in neurodegeneration. Oxid. Med. Cell. Longev. 2012, 1–11 (2012).

    Google Scholar 

  • Cenini, G., Lloret, A. & Cascella, R. Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxid. Med. Cell. Longev. 2019, 2105607 (2019).

    PubMed  PubMed Central  Google Scholar 

  • Barzilai, A., Rotman, G. & Shiloh, Y. ATM deficiency and oxidative stress: a new dimension of defective response to DNA damage. DNA Repair. 1, 3–25 (2002).

    CAS  PubMed  Google Scholar 

  • Quick, K. L. & Dugan, L. L. Superoxide stress identifies neurons at risk in a model of ataxia-telangiectasia. Ann. Neurol. 49, 627–635 (2001).

    CAS  PubMed  Google Scholar 

  • Pietrucha, B. et al. Comparison of selected parameters of redox homeostasis in patients with ataxia-telangiectasia and nijmegen breakage syndrome. Oxid. Med. Cell Longev. 2017, 6745840 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Kamsler, A. et al. Increased oxidative stress in ataxia telangiectasia evidenced by alterations in redox state of brains from Atm-deficient mice. Cancer Res. 61, 1849–1854 (2001).

    CAS  PubMed  Google Scholar 

  • Liu, N. et al. ATM deficiency induces oxidative stress and endoplasmic reticulum stress in astrocytes. Lab. Invest. 85, 1471–1480 (2005).

    CAS  PubMed  Google Scholar 

  • Takao, N., Li, Y. & Yamamoto, K. Protective roles for ATM in cellular response to oxidative stress. FEBS Lett. 472, 133–136 (2000).

    CAS  PubMed  Google Scholar 

  • Watters, D. J. Oxidative stress in ataxia telangiectasia. Redox Rep. 8, 23–29 (2003).

    CAS  PubMed  Google Scholar 

  • Reichenbach, J. et al. Elevated oxidative stress in patients with ataxia telangiectasia. Antioxid. Redox Signal. 4, 465–469 (2002).

    CAS  PubMed  Google Scholar 

  • Reichenbach, J. et al. Anti-oxidative capacity in patients with ataxia telangiectasia. Clin. Exp. Immunol. 117, 535–539 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Semlitsch, M., Shackelford, R. E., Zirkl, S., Sattler, W. & Malle, E. ATM protects against oxidative stress induced by oxidized low-density lipoprotein. DNA Repair 10, 848–860 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo, A. J. et al. Loss of ATM in airway epithelial cells is associated with susceptibility to oxidative stress. Am. J. Respir. Crit. Care Med. 196, 391–393 (2017).

    CAS  PubMed  Google Scholar 

  • Mosesso, P., Piane, M., Pepe, G., Cinelli, S. & Chessa, L. Modulation of hypersensitivity to oxidative DNA damage in ATM defective cells induced by potassium bromate by inhibition of the poly (ADP-ribose) polymerase (PARP). Mutat. Res. Genetic Toxicol. Environ. Mutagen. 836, 117–123 (2018).

    CAS  Google Scholar 

  • Ehrenfeld, V., Heusel, J. R., Fulda, S. & van Wijk, S. J. L. ATM inhibition enhances Auranofin-induced oxidative stress and cell death in lung cell lines. PLoS ONE 15, e0244060 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J. & Wong, P. K. Oxidative stress is linked to ERK1/2-p16 signaling-mediated growth defect in ATM-deficient astrocytes. J. Biol. Chem. 284, 14396–14404 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chessa, L. et al. Heterogeneity in ataxia-telangiectasia: classical phenotype associated with intermediate cellular radiosensitivity. Am. J. Med. Genet. 42, 741–746 (1992).

    CAS  PubMed  Google Scholar 

  • Gilad, S. et al. Genotype-phenotype relationships in ataxia-telangiectasia and variants. Am. J. Hum. Genet. 62, 551–561 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toyoshima, M. et al. Ataxia-telangiectasia without immunodeficiency: novel point mutations within and adjacent to the phosphatidylinositol 3-kinase-like domain. Am. J. Med. Genet. 75, 141–144 (1998).

    CAS  PubMed  Google Scholar 

  • Barlow, C. et al. Loss of the ataxia-telangiectasia gene product causes oxidative damage in target organs. Proc. Natl Acad. Sci. USA 96, 9915–9919 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuljis, R. O., Xu, Y., Aguila, M. C. & Baltimore, D. Degeneration of neurons, synapses, and neuropil and glial activation in a murine Atm knockout model of ataxia-telangiectasia. Proc. Natl Acad. Sci. USA 94, 12688–12693 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171 (1996).

    CAS  PubMed  Google Scholar 

  • Bishop, A. J., Barlow, C., Wynshaw-Boris, A. J. & Schiestl, R. H. Atm deficiency causes an increased frequency of intrachromosomal homologous recombination in mice. Cancer Res. 60, 395–399 (2000).

    CAS  PubMed  Google Scholar 

  • Xu, Y. et al. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev. 10, 2411–2422 (1996).

    CAS  PubMed  Google Scholar 

  • Schubert, R. et al. Cancer chemoprevention by the antioxidant tempol in Atm-deficient mice. Hum. Mol. Genet. 13, 1793–1802 (2004).

    CAS  PubMed  Google Scholar 

  • Reliene, R. & Schiestl, R. H. Antioxidant N-acetyl cysteine reduces incidence and multiplicity of lymphoma in Atm deficient mice. DNA Repair 5, 852–859 (2006).

    CAS  PubMed  Google Scholar 

  • Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431, 997–1002 (2004).

    CAS  PubMed  Google Scholar 

  • Kim, J. & Wong, P. K. Y. Loss of ATM impairs proliferation of neural stem cells through oxidative stress-mediated p38 MAPK signaling. Stem Cell 27, 1987–1998 (2009).

    CAS  Google Scholar 

  • Watters, D. et al. Localization of a portion of extranuclear ATM to peroxisomes. J. Biol. Chem. 274, 34277–34282 (1999).

    CAS  PubMed  Google Scholar 

  • Zhang, J. et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat. Cell Biol. 17, 1259–1269 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, D. S. et al. ATM binds to beta-adaptin in cytoplasmic vesicles. Proc. Natl Acad. Sci. USA 95, 10146–10151 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valentin-Vega, Y. A. et al. Mitochondrial dysfunction in ataxia-telangiectasia. Blood 119, 1490–1500 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watters, D. et al. Cellular localisation of the ataxia-telangiectasia (ATM) gene product and discrimination between mutated and normal forms. Oncogene 14, 1911–1921 (1997).

    CAS  PubMed  Google Scholar 

  • Blignaut, M., Loos, B., Botchway, S. W., Parker, A. W. & Huisamen, B. Ataxia-telangiectasia mutated is located in cardiac mitochondria and impacts oxidative phosphorylation. Sci. Rep. 9, 4782 (2019).

    PubMed  PubMed Central  Google Scholar 

  • Li, J., Han, Y. R., Plummer, M. R. & Herrup, K. Cytoplasmic ATM in neurons modulates synaptic function. Curr. Biol. 19, 2091–2096 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow, C. et al. ATM is a cytoplasmic protein in mouse brain required to prevent lysosomal accumulation. Proc. Natl Acad. Sci. USA 97, 871–876 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oka, A. & Takashima, S. Expression of the ataxia-telangiectasia gene (ATM) product in human cerebellar neurons during development. Neurosci. Lett. 252, 195–198 (1998).

    CAS  PubMed  Google Scholar 

  • Kuljis, R. O., Chen, G., Lee, E. Y., Aguila, M. C. & Xu, Y. ATM immunolocalization in mouse neuronal endosomes: implications for ataxia-telangiectasia. Brain Res. 842, 351–358 (1999).

    CAS  PubMed  Google Scholar 

  • Vail, G. et al. ATM protein is located on presynaptic vesicles and its deficit leads to failures in synaptic plasticity. J. Neurophysiol. 116, 201–209 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hadian, K. & Krappmann, D. Signals from the nucleus: activation of NF-kappaB by cytosolic ATM in the DNA damage response. Sci. Signal. 4, pe2 (2011).

    PubMed  Google Scholar 

  • Wu, Z.-H., Shi, Y., Tibbetts, R. S. & Miyamoto, S. Molecular linkage between the kinase ATM and NF-kappaB signaling in response to genotoxic stimuli. Science 311, 1141–1146 (2006).

    CAS  PubMed  Google Scholar 

  • Hinz, M. et al. A cytoplasmic ATM-TRAF6-cIAP1 module links nuclear DNA damage signaling to ubiquitin-mediated NF-κB activation. Mol. Cell 40, 63–74 (2010).

    CAS  PubMed  Google Scholar 

  • Miyamoto, S. Nuclear initiated NF-kappaB signaling: NEMO and ATM take center stage. Cell Res. 21, 116–130 (2011).

    CAS  PubMed  Google Scholar 

  • Wu, G. et al. An ATM/TRIM37/NEMO axis counteracts genotoxicity by activating nuclear-to-cytoplasmic NF-κB signaling. Cancer Res. 78, 6399–6412 (2018).

    CAS  PubMed  Google Scholar 

  • Fang, L. et al. ATM regulates NF-κB-dependent immediate-early genes via RelA Ser 276 phosphorylation coupled to CDK9 promoter recruitment. Nucleic Acids Res. 42, 8416–8432 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nolfi-Donegan, D., Braganza, A. & Shiva, S. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 37, 101674 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, R.-Z., Jiang, S., Zhang, L. & Yu, Z.-B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int. J. Mol. Med. 44, 3–15 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, E. F., Shaw, P. J. & De Vos, K. J. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci. Lett. 710, 132933 (2019).

    PubMed  Google Scholar 

  • Winklhofer, K. F. & Haass, C. Mitochondrial dysfunction in Parkinson’s disease. Biochim. Biophys. Acta 1802, 29–44 (2010).

    CAS  PubMed  Google Scholar 

  • Carmo, C., Naia, L., Lopes, C. & Rego, A. C. Mitochondrial dysfunction in Huntington’s disease. Adv. Exp. Med. Biol. 1049, 59–83 (2018).

    CAS  PubMed  Google Scholar 

  • Lee, J.-H. & Paull, T. T. Mitochondria at the crossroads of ATM-mediated stress signaling and regulation of reactive oxygen species. Redox Biol. 32, 101511 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eaton, J. S., Lin, Z. P., Sartorelli, A. C., Bonawitz, N. D. & Shadel, G. S. Ataxia-telangiectasia mutated kinase regulates ribonucleotide reductase and mitochondrial homeostasis. J. Clin. Invest. 117, 2723–2734 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ambrose, M., Goldstine, J. V. & Gatti, R. A. Intrinsic mitochondrial dysfunction in ATM-deficient lymphoblastoid cells. Hum. Mol. Genet. 16, 2154–2164 (2007).

    CAS  PubMed  Google Scholar 

  • Fang, E. F. et al. NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab. 24, 566–581 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weyemi, U. et al. Histone H2AX deficiency causes neurobehavioral deficits and impaired redox homeostasis. Nat. Commun. 9, 1526 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Weyemi, U. et al. Histone H2AX promotes neuronal health by controlling mitochondrial homeostasis. Proc. Natl Acad. Sci. USA 116, 7471–7476 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zha, S., Sekiguchi, J., Brush, J. W., Bassing, C. H. & Alt, F. W. Complementary functions of ATM and H2AX in development and suppression of genomic instability. Proc. Natl Acad. Sci. USA 105, 9302–9306 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar, A. & Gandhi, V. Activation of ATM kinase by ROS generated during ionophore-induced mitophagy in human T and B cell malignancies. Mol. Cell. Biochem. 476, 417–423 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Cirotti, C. et al. Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress. EMBO Rep. 22, e50500 (2021).

    CAS  PubMed  Google Scholar 

  • Rizza, S. et al. S-nitrosylation drives cell senescence and aging in mammals by controlling mitochondrial dynamics and mitophagy. Proc. Natl Acad. Sci. USA 115, E3388–E3397 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rizza, S. & Filomeni, G. Denitrosylate and live longer: how ADH5/GSNOR links mitophagy to aging. Autophagy 14, 1285–1287 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, Q.-Q. et al. ATM-CHK2-Beclin 1 axis promotes autophagy to maintain ROS homeostasis under oxidative stress. EMBO J. 39, e103111 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Criddle, D. N. et al. Menadione-induced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells. J. Biol. Chem. 281, 40485–40492 (2006).

    CAS  PubMed  Google Scholar 

  • Tassinari, V. et al. Atrophy, oxidative switching and ultrastructural defects in skeletal muscle of the ataxia telangiectasia mouse model. J. Cell Sci. 132, jcs223008 (2019).

    CAS  PubMed  Google Scholar 

  • Agathanggelou, A. et al. Targeting the ataxia telangiectasia mutated-null phenotype in chronic lymphocytic leukemia with pro-oxidants. Haematologica 100, 1076–1085 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder, E. A., Raimundo, N. & Shadel, G. S. Epigenetic silencing mediates mitochondria stress-induced longevity. Cell Metab. 17, 954–964 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, Y. & Shadel, G. S. Extension of chronological life span by reduced TOR signaling requires down-regulation of Sch9p and involves increased mitochondrial OXPHOS complex density. Aging 1, 131–145 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rieusset, J. The role of endoplasmic reticulum-mitochondria contact sites in the control of glucose homeostasis: an update. Cell Death Dis. 9, 388 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Rodríguez, L. R. et al. Oxidative stress modulates rearrangement of endoplasmic reticulum-mitochondria contacts and calcium dysregulation in a Friedreich’s ataxia model. Redox Biol. 37, 101762 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Fernandez-Marcos, P. J. & Nóbrega-Pereira, S. NADPH: new oxygen for the ROS theory of aging. Oncotarget 7, 50814–50815 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Chen, J. et al. The impact of glutamine supplementation on the symptoms of ataxia-telangiectasia: a preclinical assessment. Mol. Neurodegener. 11, 60 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Peng, M. et al. Intracellular citrate accumulation by oxidized ATM-mediated metabolism reprogramming via PFKP and CS enhances hypoxic breast cancer cell invasion and metastasis. Cell Death Dis. 10, 228 (2019).

    PubMed  PubMed Central  Google Scholar 

  • Bencokova, Z. et al. ATM activation and signaling under hypoxic conditions. Mol. Cell Biol. 29, 526–537 (2009).

    CAS  PubMed  Google Scholar 

  • Lindahl, T. & Barnes, D. E. Repair of endogenous DNA damage. Cold Spring Harb. Symp. Quant. Biol. 65, 127–133 (2000).

    CAS  PubMed  Google Scholar 

  • Reliene, R., Fischer, E. & Schiestl, R. H. Effect of N-acetyl cysteine on oxidative DNA damage and the frequency of DNA deletions in atm-deficient mice. Cancer Res. 64, 5148–5153 (2004).

    CAS  PubMed  Google Scholar 

  • Weyemi, U. et al. NADPH oxidase 4 is a critical mediator in ataxia telangiectasia disease. Proc. Natl Acad. Sci. USA 112, 2121–2126 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pommier, Y. et al. Repair of topoisomerase I-mediated DNA damage. Prog. Nucleic Acid. Res. Mol. Biol. 81, 179–229 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, K. et al. Regulation of reactive oxygen species by Atm is essential for proper response to DNA double-strand breaks in lymphocytes. J. Immunol. 178, 103–110 (2007).

    CAS  PubMed  Google Scholar 

  • Ray Chaudhuri, A. & Nussenzweig, A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 18, 610–621 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupte, R., Liu, Z. & Kraus, W. L. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev. 31, 101–126 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, C., Vyas, A., Kassab, M. A., Singh, A. K. & Yu, X. The role of poly ADP-ribosylation in the first wave of DNA damage response. Nucleic Acids Res. 45, 8129–8141 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Khamisy, S. F., Masutani, M., Suzuki, H. & Caldecott, K. W. A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res. 31, 5526–5533 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mortusewicz, O., Amé, J.-C., Schreiber, V. & Leonhardt, H. Feedback-regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to DNA damage in living cells. Nucleic Acids Res. 35, 7665–7675 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonfiglio, J. J. et al. Serine ADP-ribosylation depends on HPF1. Mol. Cell 65, 932–940.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbs-Seymour, I., Fontana, P., Rack, J. G. M. & Ahel, I. HPF1/C4orf27 is a PARP-1-interacting protein that regulates PARP-1 ADP-ribosylation activity. Mol. Cell 62, 432–442 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suskiewicz, M. J. et al. HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation. Nature 579, 598–602 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen, S. C., Hendriks, I. A., Lyon, D., Jensen, L. J. & Nielsen, M. L. Systems-wide analysis of serine ADP-ribosylation reveals widespread occurrence and site-specific overlap with phosphorylation. Cell Rep. 24, 2493–2505.e4 (2018).

    CAS  PubMed  Google Scholar 

  • Abplanalp, J. et al. Proteomic analyses identify ARH3 as a serine mono-ADP-ribosylhydrolase. Nat. Commun. 8, 2055 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Slade, D. et al. The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature 477, 616–620 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gassman, N. R., Stefanick, D. F., Kedar, P. S., Horton, J. K. & Wilson, S. H. Hyperactivation of PARP triggers nonhomologous end-joining in repair-deficient mouse fibroblasts. PLoS ONE 7, e49301 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Demin, A. A. et al. XRCC1 prevents toxic PARP1 trapping during DNA base excision repair. Mol. Cell 81, 3018–3030 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koh, D. W. et al. Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. Proc. Natl Acad. Sci. USA 101, 17699–17704 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanai, S. et al. Loss of poly(ADP-ribose) glycohydrolase causes progressive neurodegeneration in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 101, 82–86 (2004).

    CAS  PubMed  Google Scholar 

  • Horton, J. K., Stefanick, D. F. & Wilson, S. H. Involvement of poly(ADP-ribose) polymerase activity in regulating Chk1-dependent apoptotic cell death. DNA Repair. 4, 1111–1120 (2005).

    CAS  PubMed  Google Scholar 

  • Alano, C. C. et al. NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J. Neurosci. 30, 2967–2978 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y. et al. Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci. Signal. 4, ra20 (2011).

    PubMed  PubMed Central  Google Scholar 

  • David, K. K., Andrabi, S. A., Dawson, T. M. & Dawson, V. L. Parthanatos, a messenger of death. Front. Biosci. 14, 1116–1128 (2009).

    CAS  Google Scholar 

  • Andrabi, S. A. et al. Poly(ADP-ribose) (PAR) polymer is a death signal. Proc. Natl Acad. Sci. USA 103, 18308–18313 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martire, S., Mosca, L. & d’Erme, M. PARP-1 involvement in neurodegeneration: a focus on Alzheimer’s and Parkinson’s diseases. Mech. Ageing Dev. 146–148, 53–64 (2015).

    PubMed  Google Scholar 

  • Abeti, R. & Duchen, M. R. Activation of PARP by oxidative stress induced by β-amyloid: implications for Alzheimer’s disease. Neurochem. Res. 37, 2589–2596 (2012).

    CAS  PubMed  Google Scholar 

  • Lee, Y. et al. Poly (ADP-ribose) in the pathogenesis of Parkinson’s disease. BMB Rep. 47, 424–432 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Kam, T.-I. et al. Poly(ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson’s disease. Science 362, eaat8407 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Puentes, L. N. et al. Poly (ADP-ribose) induces α-synuclein aggregation in neuronal-like cells and interacts with phosphorylated α-synuclein in post mortem PD samples. bioRxiv https://doi.org/10.1101/2020.04.08.032250 (2020).

    Article  Google Scholar 

  • Leung, A. K. L. Poly(ADP-ribose): a dynamic trigger for biomolecular condensate formation. Trends Cell Biol. 30, 370–383 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mastrocola, A. S., Kim, S. H., Trinh, A. T., Rodenkirch, L. A. & Tibbetts, R. S. The RNA-binding protein fused in sarcoma (FUS) functions downstream of poly(ADP-ribose) polymerase (PARP) in response to DNA damage. J. Biol. Chem. 288, 24731–24741 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Altmeyer, M. et al. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat. Commun. 6, 8088 (2015).

    CAS  PubMed  Google Scholar 

  • Singatulina, A. S. et al. PARP-1 activation directs FUS to DNA damage sites to form PARG-reversible compartments enriched in damaged DNA. Cell Rep. 27, 1809–1821.e5 (2019).

    CAS  PubMed  Google Scholar 

  • Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    CAS  PubMed  Google Scholar 

  • Chen, J.-K., Lin, W.-L., Chen, Z. & Liu, H.-W. PARP-1-dependent recruitment of cold-inducible RNA-binding protein promotes double-strand break repair and genome stability. Proc. Natl Acad. Sci. USA 115, E1759–E1768 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duan, Y. et al. PARylation regulates stress granule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins. Cell Res. 29, 233–247 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, D.-S., Challa, S., Jones, A. & Kraus, W. L. PARPs and ADP-ribosylation in RNA biology: from RNA expression and processing to protein translation and proteostasis. Genes Dev. 34, 302–320 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aarum, J. et al. Enzymatic degradation of RNA causes widespread protein aggregation in cell and tissue lysates. EMBO Rep. 21, e4958 (2020).

    Google Scholar 

  • Gitler, A. D. & Shorter, J. RNA-binding proteins with prion-like domains in ALS and FTLD-U. Prion 5, 179–187 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz, J. C., Cech, T. R. & Parker, R. R. Biochemical properties and biological functions of FET proteins. Annu. Rev. Biochem. 84, 355–379 (2015).

    CAS  PubMed  Google Scholar 

  • Dutertre, M., Lambert, S., Carreira, A., Amor-Guéret, M. & Vagner, S. DNA damage: RNA-binding proteins protect from near and far. Trends Biochem. Sci. 39, 141–149 (2014).

    CAS  PubMed  Google Scholar 

  • Caldecott, K. W. DNA single-strand break repair and spinocerebellar ataxia. Cell 112, 7–10 (2003).

    CAS  PubMed  Google Scholar 

  • El-Khamisy, S. F. et al. Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1. Nature 434, 108–113 (2005).

    CAS  PubMed  Google Scholar 

  • Lévy, E. et al. Causative links between protein aggregation and oxidative stress: a review. Int. J. Mol. Sci. 20, 3896 (2019).

    PubMed Central  Google Scholar 

  • Poletto, M. et al. Modulation of proteostasis counteracts oxidative stress and affects DNA base excision repair capacity in ATM-deficient cells. Nucleic Acids Res. 45, 10042–10055 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wood, L. M. et al. A novel role for ATM in regulating proteasome-mediated protein degradation through suppression of the ISG15 conjugation pathway. PLoS ONE 6, e16422 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardiner, M., Toth, R., Vandermoere, F., Morrice, N. A. & Rouse, J. Identification and characterization of FUS/TLS as a new target of ATM. Biochem. J. 415, 297–307 (2008).

    CAS  PubMed  Google Scholar 

  • Deng, Q. et al. FUS is phosphorylated by DNA-PK and accumulates in the cytoplasm after DNA damage. J. Neurosci. 34, 7802–7813 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rhoads, S. N. et al. The prionlike domain of FUS is multiphosphorylated following DNA damage without altering nuclear localization. Mol. Biol. Cell 29, 1786–1797 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monahan, Z. et al. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. EMBO J. 36, 2951–2967 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polo, S. E. & Jackson, S. P. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev. 25, 409–433 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saez, I. & Vilchez, D. The mechanistic links between proteasome activity, aging and age-related diseases. Curr. Genomics 15, 38–51 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sweeney, P. et al. Protein misfolding in neurodegenerative diseases: implications and strategies. Transl. Neurodegener. 6, 6 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Dasuri, K., Zhang, L. & Keller, J. N. Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic. Biol. Med. 62, 170–185 (2013).

    CAS  PubMed  Google Scholar 

  • Naumann, M. et al. Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation. Nat. Commun. 9, 335 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Wang, W.-Y. et al. Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons. Nat. Neurosci. 16, 1383–1391 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker, C. et al. C9orf72 expansion disrupts ATM-mediated chromosomal break repair. Nat. Neurosci. 20, 1225–1235 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gandhi, J. et al. Protein misfolding and aggregation in neurodegenerative diseases: a review of pathogeneses, novel detection strategies, and potential therapeutics. Rev. Neurosci. 30, 339–358 (2019).

    PubMed  Google Scholar 

  • Olzscha, H. et al. Amyloid-like aggregates sequester numerous metastable proteins with essential. Cell. Functions. Cell 144, 67–78 (2011).

    CAS  PubMed  Google Scholar 

  • Cardinale, A. et al. Sublethal doses of β-amyloid peptide abrogate DNA-dependent protein kinase activity. J. Biol. Chem. 287, 2618–2631 (2012).

    CAS  PubMed  Google Scholar 

  • Ménisser-de Murcia, J., Mark, M., Wendling, O., Wynshaw-Boris, A. & de Murcia, G. Early embryonic lethality in PARP-1 Atm double-mutant mice suggests a functional synergy in cell proliferation during development. Mol. Cell Biol. 21, 1828–1832 (2001).

    PubMed  Google Scholar 

  • Pommier, Y., O’Connor, M. J. & de Bono, J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci. Transl. Med. 8, 362ps17 (2016).

    PubMed  Google Scholar 

  • Choy, K. R. & Watters, D. J. Neurodegeneration in ataxia-telangiectasia: multiple roles of ATM kinase in cellular homeostasis: ATM and cellular homeostasis. Dev. Dyn. 247, 33–46 (2018).

    CAS  PubMed  Google Scholar 

  • Ambrose, M. & Gatti, R. A. Pathogenesis of ataxia-telangiectasia: the next generation of ATM functions. Blood 121, 4036–4045 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shiloh, Y. & Lederman, H. M. Ataxia-telangiectasia (A-T): an emerging dimension of premature ageing. Ageing Res. Rev. 33, 76–88 (2017).

    CAS  PubMed  Google Scholar 

  • Klockgether, T., Mariotti, C. & Paulson, H. L. Spinocerebellar ataxia. Nat. Rev. Dis. Prim. 5, 24 (2019).

    PubMed  Google Scholar 

  • Paulson, H. L. et al. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19, 333–344 (1997).

    CAS  PubMed  Google Scholar 

  • Holmberg, M. Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Hum. Mol. Genet. 7, 913–918 (1998).

    CAS  PubMed  Google Scholar 

  • Orr, H. T. Cell biology of spinocerebellar ataxia. J. Cell Biol. 197, 167–177 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan, R., Yau, W. Y., O’Connor, E. & Houlden, H. Spinocerebellar ataxia: an update. J. Neurol. 266, 533–544 (2019).

    PubMed  Google Scholar 

  • Dourlen, P., Kilinc, D., Malmanche, N., Chapuis, J. & Lambert, J.-C. The new genetic landscape of Alzheimer’s disease: from amyloid cascade to genetically driven synaptic failure hypothesis? Acta Neuropathol. 138, 221–236 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tada, M., Nishizawa, M. & Onodera, O. Roles of inositol 1,4,5-trisphosphate receptors in spinocerebellar ataxias. Neurochem. Int. 94, 1–8 (2016).

    CAS  PubMed  Google Scholar 

  • Shimobayashi, E. & Kapfhammer, J. P. Calcium signaling, PKC gamma, IP3R1 and CAR8 link spinocerebellar ataxias and purkinje cell dendritic development. Curr. Neuropharmacol. 16, 151–159 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kasumu, A. & Bezprozvanny, I. Deranged calcium signaling in Purkinje cells and pathogenesis in spinocerebellar ataxia 2 (SCA2) and other ataxias. Cerebellum 11, 630–639 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X. et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J. Neurosci. 28, 12713–12724 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, D.-H. et al. Missense mutations in the regulatory domain of PKC gamma: a new mechanism for dominant nonepisodic cerebellar ataxia. Am. J. Hum. Genet. 72, 839–849 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamarit, J. et al. Mitochondrial iron and calcium homeostasis in Friedreich ataxia. IUBMB Life 73, 543–553 (2021).

    CAS  PubMed  Google Scholar 

  • Abeti, R., Brown, A. F., Maiolino, M., Patel, S. & Giunti, P. Calcium deregulation: novel insights to understand Friedreich’s ataxia pathophysiology. Front. Cell. Neurosci.12, 264 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J., Kim, K., Mo, J.-S. & Lee, Y. Atm deficiency in the DNA polymerase β null cerebellum results in cerebellar ataxia and Itpr1 reduction associated with alteration of cytosine methylation. Nucleic Acids Res. 48, 3678–3691 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Honrath, B. et al. Glucose-regulated protein 75 determines ER–mitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discov. 3, 17076 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Famulski, K. S. & Paterson, M. C. Defective regulation of Ca2+/calmodulin-dependent protein kinase II in gamma-irradiated ataxia telangiectasia fibroblasts. FEBS Lett. 453, 183–186 (1999).

    CAS  PubMed  Google Scholar 

  • Famulski, K. S. et al. Aberrant sensing of extracellular Ca2+ by cultured ataxia telangiectasia fibroblasts. Oncogene 22, 471–475 (2003).

    CAS  PubMed  Google Scholar 

  • Khanna, K. K. et al. Defective signaling through the B cell antigen receptor in Epstein-Barr virus-transformed ataxia-telangiectasia cells. J. Biol. Chem. 272, 9489–9495 (1997).

    CAS  PubMed  Google Scholar 

  • Yorek, M. A. et al. Abnormal myo-inositol and phospholipid metabolism in cultured fibroblasts from patients with ataxia telangiectasia. Biochim. Biophys. Acta 1437, 287–300 (1999).

    CAS  PubMed  Google Scholar 

  • Kondo, N. et al. Defective calcium-dependent signal transduction in T lymphocytes of ataxia-telangiectasia. Scand. J. Immunol. 38, 45–48 (1993).

    CAS  PubMed  Google Scholar 

  • Chiesa, N., Barlow, C., Wynshaw-Boris, A., Strata, P. & Tempia, F. Atm-deficient mice Purkinje cells show age-dependent defects in calcium spike bursts and calcium currents. Neuroscience 96, 575–583 (2000).

    CAS  PubMed  Google Scholar 

  • Dugger, B. N. & Dickson, D. W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 9, a028035 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Araki, K. et al. Parkinson’s disease is a type of amyloidosis featuring accumulation of amyloid fibrils of α-synuclein. Proc. Natl Acad. Sci. USA 116, 17963–17969 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dias, V., Junn, E. & Mouradian, M. M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis. 3, 461–491 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, A. & Ratan, R. R. Oxidative stress and Huntington’s disease: the good, the bad, and the ugly. J. Huntingtons Dis. 5, 217–237 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Buratti, E. & Baralle, F. E. TDP-43: gumming up neurons through protein-protein and protein-RNA interactions. Trends Biochem. Sci. 37, 237–247 (2012).

    CAS  PubMed  Google Scholar 

  • Soto, C. & Pritzkow, S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci. 21, 1332–1340 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mulligan, V. K. & Chakrabartty, A. Protein misfolding in the late-onset neurodegenerative diseases: common themes and the unique case of amyotrophic lateral sclerosis. Proteins 81, 1285–1303 (2013).

    CAS  PubMed  Google Scholar 

  • Gitler, A. D., Dhillon, P. & Shorter, J. Neurodegenerative disease: models, mechanisms, and a new hope. Dis. Model. Mech. 10, 499–502 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lavin, M. F. The appropriateness of the mouse model for ataxia-telangiectasia: neurological defects but no neurodegeneration. DNA Repair. 12, 612–619 (2013).

    CAS  PubMed  Google Scholar 

  • Beraldi, R. et al. A novel porcine model of ataxia telangiectasia reproduces neurological features and motor deficits of human disease. Hum. Mol. Genet. 24, 6473–6484 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rimkus, S. A. & Wassarman, D. A. A pharmacological screen for compounds that rescue the developmental lethality of a Drosophila ATM mutant. PLoS ONE 13, e0190821 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Quek, H. et al. A rat model of ataxia-telangiectasia: evidence for a neurodegenerative phenotype. Hum. Mol. Genet. 26, 109–123 (2017).

    CAS  PubMed  Google Scholar 

  • Quek, H. et al. Rats with a missense mutation in Atm display neuroinflammation and neurodegeneration subsequent to accumulation of cytosolic DNA following unrepaired DNA damage. J. Leukoc. Biol. 101, 927–947 (2017).

    CAS  PubMed  Google Scholar 

  • Eilam, R. et al. Selective loss of dopaminergic nigro-striatal neurons in brains of Atm-deficient mice. Proc. Natl Acad. Sci. USA 95, 12653–12656 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levine-Small, N. et al. Reduced synchronization persistence in neural networks derived from atm-deficient mice. Front. Neurosci. 5, 46 (2011).

    PubMed  PubMed Central  Google Scholar 

  • Kanner, S. et al. Astrocytes restore connectivity and synchronization in dysfunctional cerebellar networks. Proc. Natl Acad. Sci. USA 115, 8025–8030 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meshulam, L. et al. The role of the neuro-astro-vascular unit in the etiology of ataxia telangiectasia. Front. Pharmacol. 3, 157 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Browne, S. E. et al. Treatment with a catalytic antioxidant corrects the neurobehavioral defect in ataxia-telangiectasia mice. Free Radic. Biol. Med. 36, 938–942 (2004).

    CAS  PubMed  Google Scholar 

  • Gueven, N. et al. Dramatic extension of tumor latency and correction of neurobehavioral phenotype in Atm-mutant mice with a nitroxide antioxidant. Free. Radic. Biol. Med. 41, 992–1000 (2006).

    CAS  PubMed  Google Scholar 

  • Li, J. et al. EZH2-mediated H3K27 trimethylation mediates neurodegeneration in ataxia-telangiectasia. Nat. Neurosci. 16, 1745–1753 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Han, S. S. W., Williams, L. A. & Eggan, K. C. Constructing and deconstructing stem cell models of neurological disease. Neuron 70, 626–644 (2011).

    CAS  PubMed  Google Scholar 

  • Chang, C.-Y. et al. Induced pluripotent stem Cell (iPSC)-Based neurodegenerative disease models for phenotype recapitulation and drug screening. Molecules 25, 2000 (2020).

    CAS  PubMed Central  Google Scholar 

  • Marton, R. M. & Pas¸ca, S. P. Neural differentiation in the third dimension: generating a human midbrain. Cell Stem Cell 19, 145–146 (2016).

    CAS  PubMed  Google Scholar 

  • Wu, Y.-Y., Chiu, F.-L., Yeh, C.-S. & Kuo, H.-C. Opportunities and challenges for the use of induced pluripotent stem cells in modelling neurodegenerative disease. Open. Biol. 9, 180177 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groh, M., Lufino, M. M. P., Wade-Martins, R. & Gromak, N. R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLoS Genet. 10, e1004318 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Neil, A. J., Liang, M. U., Khristich, A. N., Shah, K. A. & Mirkin, S. M. RNA–DNA hybrids promote the expansion of Friedreich’s ataxia (GAA)n repeats via break-induced replication. Nucleic Acids Res. 46, 3487–3497 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhardt, J. et al. Stalled DNA replication forks at the endogenous GAA repeats drive repeat expansion in Friedreich’s ataxia cells. Cell Rep. 16, 1218–1227 (2016).

    CAS  PubMed  PubMed Central  Google Scholar