nature.com

Reverse weathering as a long-term stabilizer of marine pH and planetary climate - Nature

  • ️Planavsky, Noah J.
  • ️Wed Aug 08 2018
  • Gough, D. Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981).

    Article  ADS  CAS  Google Scholar 

  • Kump, L. R., Brantley, S. L. & Arthur, M. A. Chemical weathering, atmospheric CO2, and climate. Annu. Rev. Earth Planet. Sci. 28, 611–667 (2000).

    Article  ADS  CAS  Google Scholar 

  • Keller, C. & Wood, B. Possibility of chemical weathering before the advent of vascular land plants. Nature 364, 223–225 (1993).

    Article  ADS  CAS  Google Scholar 

  • Mackenzie, F. T. & Garrels, R. M. Chemical mass balance between rivers and oceans. Am. J. Sci. 264, 507–525 (1966).

    Article  ADS  CAS  Google Scholar 

  • Garrels, R. M. Silica: role in the buffering of natural waters. Science 148, 69 (1965).

    Article  ADS  PubMed  CAS  Google Scholar 

  • Sillén, L. G. The physical chemistry of sea water. Oceanography 67, 549–581 (1961).

    Google Scholar 

  • Mackenzie, F. T. & Garrels, R. M. Silica-bicarbonate balance in the ocean and early diagenesis. J. Sedim. Petrol. 36, 1075–1084 (1966).

    Google Scholar 

  • Maliva, R. G., Knoll, A. H. & Simonson, B. M. Secular change in the Precambrian silica cycle: insights from chert petrology. Geol. Soc. Am. Bull. 117, 835–845 (2005).

    Article  ADS  Google Scholar 

  • Siever, R. The silica cycle in the Precambrian. Geochim. Cosmochim. Acta 56, 3265–3272 (1992).

    Article  ADS  CAS  Google Scholar 

  • Royer, D. L., Berner, R. A., Montañez, I. P., Tabor, N. J. & Beerling, D. J. CO2 as a primary driver of Phanerozoic climate. GSA Today 14, 4–10 (2004).

    Article  Google Scholar 

  • Walker, J. C., Hays, P. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. Oceans 86, 9776–9782 (1981).

    Article  ADS  CAS  Google Scholar 

  • Kasting, J. F. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambr. Res. 34, 205–229 (1987).

    Article  ADS  CAS  Google Scholar 

  • Sheldon, N. D. Precambrian paleosols and atmospheric CO2 levels. Precambr. Res. 147, 148–155 (2006).

    Article  ADS  CAS  Google Scholar 

  • Kanzaki, Y. & Murakami, T. Estimates of atmospheric CO2 in the Neoarchean–Paleoproterozoic from paleosols. Geochim. Cosmochim. Acta 159, 190–219 (2015).

    Article  ADS  CAS  Google Scholar 

  • Fiorella, R. P. & Sheldon, N. D. Equable end Mesoproterozoic climate in the absence of high CO2. Geology 45, 231–234 (2017).

    Article  ADS  CAS  Google Scholar 

  • Urey, H. C. On the early chemical history of the Earth and the origin of life. Proc. Natl Acad. Sci. USA 38, 351–363 (1952).

    Article  ADS  PubMed  CAS  Google Scholar 

  • Mackin, J. E. & Aller, R. C. Dissolved Al in sediments and waters of the East China Sea: implications for authigenic mineral formation. Geochim. Cosmochim. Acta 48, 281–297 (1984).

    Article  ADS  CAS  Google Scholar 

  • Baldermann, A., Warr, L., Letofsky-Papst, I. & Mavromatis, V. Substantial iron sequestration during green-clay authigenesis in modern deep-sea sediments. Nat. Geosci. 8, 885–889 (2015).

    Article  ADS  CAS  Google Scholar 

  • Bhattacharyya, D. P. Origin of berthierine in ironstones. Clays Clay Miner. 31, 173–182 (1983).

    Article  ADS  CAS  Google Scholar 

  • Zeebe, R. LOSCAR: long-term ocean-atmosphere-sediment carbon cycle reservoir model v2.0.4. Geosci. Model Dev. 5, 149–166 (2012).

    Article  ADS  CAS  Google Scholar 

  • Hazen, R. M. et al. Clay mineral evolution. Am. Mineral. 98, 2007–2029 (2013).

    Article  ADS  CAS  Google Scholar 

  • Michalopoulos, P. & Aller, R. C. Rapid clay mineral formation of Amazon delta sediments: reverse weathering and oceanic elemental cycles. Science 270, 614–617 (1995).

    Article  ADS  CAS  Google Scholar 

  • Halevy, I., Alesker, M., Schuster, E., Popovitz-Biro, R. & Feldman, Y. A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nat. Geosci. 10, 135–139 (2017).

    Article  ADS  CAS  Google Scholar 

  • Tosca, N. J., Guggenheim, S. & Pufahl, P. K. An authigenic origin for Precambrian greenalite: implications for iron formation and the chemistry of ancient seawater. Geol. Soc. Am. Bull. 128, 511–530 (2016).

    Article  ADS  CAS  Google Scholar 

  • Ehlert, C. et al. Stable silicon isotope signatures of marine pore waters—biogenic opal dissolution versus authigenic clay mineral formation. Geochim. Cosmochim. Acta 191, 102–117 (2016).

    Article  ADS  CAS  Google Scholar 

  • Rahman, S., Aller, R. & Cochran, J. Cosmogenic 32Si as a tracer of biogenic silica burial and diagenesis: major deltaic sinks in the silica cycle. Geophys. Res. Lett. 43, 7124–7132 (2016).

    Article  ADS  CAS  Google Scholar 

  • Wallmann, K. et al. Silicate weathering in anoxic marine sediments. Geochim. Cosmochim. Acta 72, 2895–2918 (2008).

    Article  ADS  CAS  Google Scholar 

  • Michalopoulos, P. & Aller, R. C. Early diagenesis of biogenic silica in the Amazon delta: alteration, authigenic clay formation, and storage. Geochim. Cosmochim. Acta 68, 1061–1085 (2004).

    Article  ADS  CAS  Google Scholar 

  • Tréguer, P. J. & De La Rocha, C. L. The world ocean silica cycle. Annu. Rev. Mar. Sci. 5, 477–501 (2013).

    Article  Google Scholar 

  • Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).

    Article  CAS  Google Scholar 

  • Coogan, L. A. & Dosso, S. E. Alteration of ocean crust provides a strong temperature dependent feedback on the geological carbon cycle and is a primary driver of the Sr-isotopic composition of seawater. Earth Planet. Sci. Lett. 415, 38–46 (2015).

    Article  ADS  CAS  Google Scholar 

  • Tajika, E. & Matsui, T. Evolution of terrestrial proto-CO2 atmosphere coupled with thermal history of the Earth. Earth Planet. Sci. Lett. 113, 251–266 (1992).

    Article  ADS  CAS  Google Scholar 

  • Holland, H. D. Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002).

    Article  ADS  CAS  Google Scholar 

  • Sillén, L. G. The ocean as a chemical system. Science 156, 1189–1197 (1967).

    Article  ADS  PubMed  Google Scholar 

  • Mackenzie, F. T. & Garrels, R. M. Silicates: reactivity with sea water. Science 150, 57–58 (1965).

    Article  ADS  PubMed  CAS  Google Scholar 

  • Holland, H. D. The history of ocean water and its effect on the chemistry of the atmosphere. Proc. Natl Acad. Sci. USA 53, 1173–1183 (1965).

    Article  ADS  CAS  Google Scholar 

  • Michalopoulos, P., Aller, R. C. & Reeder, R. J. Conversion of diatoms to clays during early diagenesis in tropical, continental shelf muds. Geology 28, 1095–1098 (2000).

    Article  ADS  Google Scholar 

  • Presti, M. & Michalopoulos, P. Estimating the contribution of the authigenic mineral component to the long-term reactive silica accumulation on the western shelf of the Mississippi River Delta. Cont. Shelf Res. 28, 823–838 (2008).

    Article  ADS  Google Scholar 

  • Mackin, J. E. & Aller, R. C. The effects of clay mineral reactions on dissolved Al distributions in sediments and waters of the Amazon continental shelf. Cont. Shelf Res. 6, 245–262 (1986).

    Article  ADS  CAS  Google Scholar 

  • Ristvet, B. L. Reverse Weathering Reactions Within Recent Nearshore Marine Sediments, Kaneohe Bay, Oahu. PhD thesis, https://scholarspace.manoa.hawaii.edu/bitstream/10125/18151/1/ristvet.pdf, Northwestern Univ. Illinois, Chicago (1978).

  • Higgins, J. & Schrag, D. Constraining magnesium cycling in marine sediments using magnesium isotopes. Geochim. Cosmochim. Acta 74, 5039–5053 (2010).

    Article  ADS  CAS  Google Scholar 

  • Baldermann, A., Warr, L. N., Grathoff, G. H. & Dietzel, M. The rate and mechanism of deep-sea glauconite formation at the Ivory Coast–Ghana marginal ridge. Clays Clay Miner. 61, 258–276 (2013).

    Article  ADS  CAS  Google Scholar 

  • Treguer, P. et al. The silica balance in the world ocean: a reestimate. Science 268, 375–379 (1995).

    Article  ADS  PubMed  CAS  Google Scholar 

  • Laruelle, G. G. et al. Anthropogenic perturbations of the silicon cycle at the global scale: key role of the land-ocean transition. Glob. Biogeochem. Cycles 23, https://doi.org/10.1029/2008GB003267 (2009).

  • Holland, H. D. Sea level, sediments and the composition of seawater. Am. J. Sci. 305, 220–239 (2005).

    Article  ADS  CAS  Google Scholar 

  • Berner, R. A. & Kothavala, Z. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182–204 (2001).

    Article  ADS  CAS  Google Scholar 

  • Mills, B., Lenton, T. M. & Watson, A. J. Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering. Proc. Natl Acad. Sci. USA 111, 9073–9078 (2014).

    Article  ADS  PubMed  CAS  Google Scholar 

  • Frings, P. Revisiting the dissolution of biogenic Si in marine sediments: a key term in the ocean Si budget. Acta Geochim. 36, 429–432 (2017).

    Article  CAS  Google Scholar 

  • Brady, P. V. & Carroll, S. A. Direct effects of CO2 and temperature on silicate weathering: possible implications for climate control. Geochim. Cosmochim. Acta 58, 1853–1856 (1994).

    Article  ADS  CAS  Google Scholar 

  • Pichevin, L., Ganeshram, R., Geibert, W., Thunell, R. & Hinton, R. Silica burial enhanced by iron limitation in oceanic upwelling margins. Nat. Geosci. 7, 541–546 (2014).

    Article  ADS  CAS  Google Scholar 

  • Soppa, M. A. et al. Global retrieval of diatom abundance based on phytoplankton pigments and satellite data. Remote Sens. 6, 10089–10106 (2014).

    Article  ADS  Google Scholar 

  • Siever, R. The silica budget in the sedimentary cycle. Am. Mineral. 42, 821–841 (1957).

    CAS  Google Scholar 

  • Drever, J. I. Geochemical model for the origin of Precambrian banded iron formations. Geol. Soc. Am. Bull. 85, 1099–1106 (1974).

    Article  ADS  CAS  Google Scholar 

  • Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans (Princeton Univ. Press, 1984).

  • Perry, E. C. J. & Lefticariu, L. Formation and Geochemistry of Precambrian Cherts. In Treatise on Geochemistry Vol. 7 (eds Holland, H. D. & Turekian, K. K.) 1–21 (Elsevier, New York, 2003).

  • Maliva, R. G., Knoll, A. H. & Siever, R. Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle. Palaios 4, 519–532 (1989).

    Article  ADS  PubMed  CAS  Google Scholar 

  • Fischer, W. W. & Knoll, A. H. An iron shuttle for deepwater silica in Late Archean and early Paleoproterozoic iron formation. Geol. Soc. Am. Bull. 121, 222–235 (2009).

    Google Scholar 

  • Knoll, A. Exceptional preservation of photosynthetic organisms in silicified carbonates and silicified peats. Phil. Trans. R. Soc. Lond. B 311, 111–122 (1985).

    Article  ADS  Google Scholar 

  • Knoll, A., Swett, K. & Mark, J. Paleobiology of a Neoproterozoic tidal flat complex: the Draken Conglomerate Formation, Spitsbergen. J. Paleontol. 65, 531–570 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Callow, R. H. & Brasier, M. D. Remarkable preservation of microbial mats in Neoproterozoic siliciclastic settings: implications for Ediacaran taphonomic models. Earth Sci. Rev. 96, 207–219 (2009).

    Article  ADS  Google Scholar 

  • Renaut, R., Jones, B. & Tiercelin, J. J. Rapid in situ silicification of microbes at Loburu hot springs, Lake Bogoria, Kenya Rift Valley. Sedimentology 45, 1083–1103 (1998).

    Article  ADS  CAS  Google Scholar 

  • Newman, S. et al. Experimental fossilization of mat-forming cyanobacteria in coarse-grained siliciclastic sediments. Geobiology 44, 579–582 (2017).

    ADS  Google Scholar 

  • Klein, C. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. Am. Mineral. 90, 1473–1499 (2005).

    Article  ADS  CAS  Google Scholar 

  • Kaufman, A. J., Hayes, J. & Klein, C. Primary and diagenetic controls of isotopic compositions of iron-formation carbonates. Geochim. Cosmochim. Acta 54, 3461–3473 (1990).

    Article  ADS  PubMed  CAS  Google Scholar 

  • Morris, R. Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambr. Res. 60, 243–286 (1993).

    Article  ADS  CAS  Google Scholar 

  • Ewers, W. & Morris, R. Studies of the Dales Gorge member of the Brockman iron formation, Western Australia. Econ. Geol. 76, 1929–1953 (1981).

    Article  CAS  Google Scholar 

  • Eugster, H. & Chou, I. The depositional environments of Precambrian banded iron-formations. Econ. Geol. 68, 1144–1168 (1973).

    Article  CAS  Google Scholar 

  • Rasmussen, B., Muhling, J. R., Suvorova, A. & Krapež, B. Greenalite precipitation linked to the deposition of banded iron formations downslope from a late Archean carbonate platform. Precambr. Res. 290, 49–62 (2017).

    Article  ADS  CAS  Google Scholar 

  • Rasmussen, B., Krapež, B., Muhling, J. R. & Suvorova, A. Precipitation of iron silicate nanoparticles in early Precambrian oceans marks Earth’s first iron age. Geology 43, 303–306 (2015).

    Article  ADS  CAS  Google Scholar 

  • Tosca, N. J., Macdonald, F. A., Strauss, J. V., Johnston, D. T. & Knoll, A. H. Sedimentary talc in Neoproterozoic carbonate successions. Earth Planet. Sci. Lett. 306, 11–22 (2011).

    Article  ADS  CAS  Google Scholar 

  • Noack, Y., Decarreau, A., Boudzoumou, F. & Trompette, R. Low-temperature oolitic talc in upper Proterozoic rocks, Congo. J. Sediment. Res. 59, 717–723 (1989).

    CAS  Google Scholar 

  • Davis, C. C., Chen, H.-W. & Edwards, M. Modeling silica sorption to iron hydroxide. Environ. Sci. Technol. 36, 582–587 (2002).

    Article  ADS  PubMed  CAS  Google Scholar 

  • Siever, R. & Woodford, N. Sorption of silica by clay minerals. Geochim. Cosmochim. Acta 37, 1851–1880 (1973).

    Article  ADS  CAS  Google Scholar 

  • Konhauser, K. O., Lalonde, S. V., Amskold, L. & Holland, H. D. Was there really an Archean phosphate crisis? Science 315, 1234 (2007).

    Article  ADS  PubMed  CAS  Google Scholar 

  • Siever, R. Silica solubility, 0°-200° C, and the diagenesis of siliceous sediments. J. Geol. 70, 127–150 (1962).

    Article  ADS  CAS  Google Scholar 

  • Konhauser, K. O. et al. Iron formations: a global record of Neoarchaean to Palaeoproterozoic environmental history. Earth Sci. Rev. 172, 140–177 (2017).

    Article  CAS  Google Scholar 

  • Korenaga, J., Planavsky, N. J. & Evans, D. A. Global water cycle and the coevolution of the Earth’s interior and surface environment. Phil. Trans. R. Soc. Lond. A 375, 20150393 (2017).

    Article  ADS  CAS  Google Scholar 

  • Flament, N., Coltice, N. & Rey, P. F. A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth Planet. Sci. Lett. 275, 326–336 (2008).

    Article  ADS  CAS  Google Scholar 

  • Satkoski, A. M., Lowe, D. R., Beard, B. L., Coleman, M. L. & Johnson, C. M. A high continental weathering flux into Paleoarchean seawater revealed by strontium isotope analysis of 3.26 Ga barite. Earth Planet. Sci. Lett. 454, 28–35 (2016).

    Article  ADS  CAS  Google Scholar 

  • Lee, C.-T. A. et al. Two-step rise of atmospheric oxygen linked to the growth of continents. Nat. Geosci. 9, 417–424 (2016).

    Article  ADS  CAS  Google Scholar 

  • Tang, M., Chen, K. & Rudnick, R. L. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science 351, 372–375 (2016).

    Article  ADS  PubMed  CAS  Google Scholar 

  • Greber, N. D. et al. Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago. Science 357, 1271–1274 (2017).

    Article  ADS  PubMed  CAS  Google Scholar 

  • Holland, H. D. Why the atmosphere became oxygenated: a proposal. Geochim. Cosmochim. Acta 73, 5241–5255 (2009).

    Article  ADS  CAS  Google Scholar 

  • O’Neill, C., Lenardic, A., Höink, T. & Coltice, N. Mantle convection and outgassing on terrestrial planets. In Comparative Climatology of Terrestrial Planets (eds Mackwell, S. J. et al.) 473–446 (Univ. of Arizona Press, Tucson, 2014).

  • Pletsch, T. Palaeoenvironmental implications of palygorskite clays in Eocene deep-water sediments from the western central Atlantic. Geol. Soc. Lond. Spec. Publ. 183, 307–316 (2001).

    Article  ADS  CAS  Google Scholar 

  • Rasmussen, B., Meier, D. B., Krapež, B. & Muhling, J. R. Iron silicate microgranules as precursor sediments to 2.5-billion-year-old banded iron formations. Geology 41, 435–438 (2013).

    Article  ADS  CAS  Google Scholar 

  • Johnson, J. E., Muhling, J. R., Cosmidis, J., Rasmussen, B. & Templeton, A. S. Low-Fe (III) greenalite was a primary mineral from Neoarchean oceans. Geophys. Res. Lett. 45, 3182–3192 (2018).

    Article  ADS  CAS  Google Scholar 

  • Huang, J., Chu, X., Lyons, T., Planavsky, N. & Wen, H. A new look at saponite formation and its implications for early animal records in the Ediacaran of South China. Geobiology 11, 3–14 (2013).

    Article  PubMed  CAS  Google Scholar 

  • LaBerge, G. L. Development of magnetite in iron formations of the Lake Superior region. Econ. Geol. 59, 1313–1342 (1964).

    Article  CAS  Google Scholar 

  • French, B. M. Progressive contact metamorphism of the Biwabik Iron-formation, Mesabi Range, Minnesota. Minn. Geol. Surv. 49, 1–103 https://conservancy.umn.edu/bitstream/handle/11299/57071/MGS_B_45.pdf?sequence=1 (University of Minnesota Digital Conservancy, Univ. Minnesota Press, Minneapolis, 1968).

    Google Scholar 

  • Garrels, R. M. & Mackenzie, F. T. Sedimentary rock types: relative proportions as a function of geological time. Science 163, 570–571 (1969).

    Article  ADS  PubMed  CAS  Google Scholar 

  • Peters, S. E. & Husson, J. M. Sediment cycling on continental and oceanic crust. Geology 45, 323–326 (2017).

    Article  ADS  Google Scholar 

  • James, H. L. Sedimentary facies of iron-formation. Econ. Geol. 49, 235–293 (1954).

    Article  CAS  Google Scholar 

  • Klein, C. Greenalite, stilpnomelane, minnesotaite, crocidolite and carbonates in a very low-grade metamorphic Precambrian iron formation. Can. Mineral. 12, 475–498 (1974).

    Google Scholar 

  • Wood, R. A., Grotzinger, J. P. & Dickson, J. Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science 296, 2383–2386 (2002).

    Article  ADS  PubMed  CAS  Google Scholar 

  • Martin, R. E. Cyclic and secular variation in microfossil biomineralization: clues to the biogeochemical evolution of Phanerozoic oceans. Global Planet. Change 11, 1–23 (1995).

    Article  ADS  Google Scholar 

  • Ridgwell, A. A Mid Mesozoic revolution in the regulation of ocean chemistry. Mar. Geol. 217, 339–357 (2005).

    Article  ADS  CAS  Google Scholar 

  • Grotzinger, J. P. & Knoll, A. H. Anomalous carbonate precipitates: is the Precambrian the key to the Permian? Palaios 10, 578–596 (1995).

    Article  ADS  PubMed  CAS  Google Scholar 

  • Sumner, D. Y. & Grotzinger, J. P. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration? Geology 24, 119–122 (1996).

    Article  ADS  PubMed  CAS  Google Scholar 

  • Burton, E. A. & Walter, L. M. Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control? Geology 15, 111–114 (1987).

    Article  ADS  CAS  Google Scholar 

  • Reinhard, C. T. et al. Evolution of the global phosphorus cycle. Nature 541, 386–389 (2017).

    Article  ADS  PubMed  CAS  Google Scholar 

  • Katsev, S. & Crowe, S. A. Organic carbon burial efficiencies in sediments: the power law of mineralization revisited. Geology 43, 607–610 (2015).

    Article  ADS  CAS  Google Scholar 

  • Middelburg, J. J. A simple rate model for organic matter decomposition in marine sediments. Geochim. Cosmochim. Acta 53, 1577–1581 (1989).

    Article  ADS  CAS  Google Scholar 

  • Berner, R. A. Principles of Chemical Sedimentology (McGraw-Hill, 1971).

  • Boudreau, B. P. Diagenetic Models and their Implementation (Springer, 1997).

  • Wilson, J., Savage, D., Cuadros, J., Shibata, M. & Ragnarsdottir, K. V. The effect of iron on montmorillonite stability. (I) Background and thermodynamic considerations. Geochim. Cosmochim. Acta 70, 306–322 (2006).

  • Fritz, S. J. & Toth, T. A. An Fe-berthierine from a Cretaceous laterite; Part II, Estimation of Eh, pH and \({p}_{C{O}_{2}}\) conditions of formation. Clays Clay Miner. 45, 580–586 (1997).

    Article  ADS  CAS  Google Scholar 

  • Weaver, C. E. & Beck, K. C. Miocene of the SE United States: a model for chemical sedimentation in a peri-marine environment. Sedim. Geol. 17, 1–234 (1977).

    Article  CAS  Google Scholar 

  • Tosca, N. J. & Wright, V. P. Diagenetic pathways linked to labile Mg-clays in lacustrine carbonate reservoirs: a model for the origin of secondary porosity in the Cretaceous pre-salt Barra Velha Formation, offshore Brazil. Geol. Soc. Lond. Spec. Publ. 435, 435 (2015).

    Google Scholar 

  • Birsoy, R. Formation of sepiolite-palygorskite and related minerals from solution. Clays Clay Miner. 50, 736–745 (2002).

    Article  ADS  CAS  Google Scholar 

  • Baldermann, A., Mavromatis, V., Frick, P. M. & Dietzel, M. Effect of aqueous Si/Mg ratio and pH on the nucleation and growth of sepiolite at 25°C. Geochim. Cosmochim. Acta 227, 211–226 (2018).

    Article  ADS  CAS  Google Scholar 

  • Wollast, R., Mackenzie, F. T. & Bricker, O. P. Experimental precipitation and genesis of sepiolite at Earth-surface conditions. Am. Mineral. 53, 1645–1662 (1968).

    CAS  Google Scholar 

  • Tosca, N. & Masterson, A. Chemical controls on incipient Mg-silicate crystallization at 25 C: implications for early and late diagenesis. Clay Miner. 49, 165–194 (2014).

    Article  ADS  CAS  Google Scholar 

  • Sharma, G. D. Influence of CO2 on silica in solution. Geochem. J. 3, 213–223 (1970).

    Article  CAS  Google Scholar 

  • Reed, D. C., Slomp, C. P. & Gustafsson, B. G. Sedimentary phosphorus dynamics and the evolution of bottom-water hypoxia: a coupled benthic–pelagic model of a coastal system. Limnol. Oceanogr. 56, 1075–1092 (2011).

    Article  ADS  CAS  Google Scholar 

  • Uchikawa, J. & Zeebe, R. E. Influence of terrestrial weathering on ocean acidification and the next glacial inception. Geophys. Res. Lett. 35, https://doi.org/10.1029/2008GL035963 (2008).

  • Sleep, N. H. & Zahnle, K. Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res. Planets 106, 1373–1399 (2001).

    Article  ADS  CAS  Google Scholar 

  • Walker, J. C. & Kasting, J. F. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide. Global Planet. Change 5, 151–189 (1992).

    Article  ADS  Google Scholar 

  • Volk, T. Feedbacks between weathering and atmospheric CO2 over the last 100 million years. Am. J. Sci. 287, 763–779 (1987).

    Article  ADS  CAS  Google Scholar