A graph placement methodology for fast chip design - Nature
- ️Dean, Jeff
- ️Wed Jun 09 2021
References
Markov, I. L., Hu, J. & Kim, M. Progress and challenges in VLSI placement research. Proc. IEEE 103, 1985–2003 (2015).
Tang, M. & Yao, X. A memetic algorithm for VLSI floorplanning. IEEE Trans. Syst. Man Cybern. B 37, 62–69 (2007).
Breuer, M. A. A class of min-cut placement algorithms. In Proc. 14th Design Automation Conference (DAC 1977) 284–290 (IEEE, 1977).
Fiduccia, C. M. & Mattheyses, R. M. A linear-time heuristic for improving network partitions. In 19th Design Automation Conference 175–181 (IEEE, 1982).
Roy, J. A., Papa, D. A. & Markov, I. L. in Modern Circuit Placement (eds Nam, G.-J. & Cong, J. J.) 97–133 (Springer, 2007).
Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983).
Sechen, C. M. & Sangiovanni-Vincentelli, A. L. TimberWolf3.2: a new standard cell placement and global routing package. In 23rd ACM/IEEE Design Automation Conference 432–439 (IEEE, 1986).
Sarrafzadeh, M., Wang, M. & Yang, X. in Modern Placement Techniques 57–89 (Springer, 2003).
Luo, T. & Pan, D. Z. DPlace2.0: a stable and efficient analytical placement based on diffusion. In 2008 Asia and South Pacific Design Automation Conference 346–351 (IEEE, 2008).
Hu, B. & Marek-Sadowska, M. Multilevel fixed-point-addition-based VLSI placement. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 24, 1188–1203 (2005).
Viswanathan, N., Pan, M. & Chu, C. in Modern Circuit Placement (eds Nam, G.-J. & Cong, J. J.) 193–228 (Springer, 2007).
Kim, M., Lee, D., Markov, I. L. & Sim, P. L. An effective placement algorithm. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 31, 50–60 (2012).
Lu, J. et al. ePlace: electrostatics-based placement using fast Fourier transform and Nesterov’s Method. ACM Trans. Des. Autom. Electron. Syst. 20, 17 (2015).
Cheng, C.-K., Kahng, A. B., Kang, I. & Wang, L. RePlAce: advancing solution quality and routability validation in global placement. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 38, 1717–1730 (2019).
Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017).
Aslam, B., Amjad, F. & Zou, C. C. Optimal roadside units placement in urban areas for vehicular networks. In 2012 IEEE Symposium on Computers and Communications (ISCC) 000423–000429 (IEEE, 2012).
Medlock, J. & Galvani, A. P. Optimizing influenza vaccine distribution. Science 325, 1705–1708 (2009).
Cherniak, C., Mokhtarzada, Z., Rodriguez-Esteban, R. & Changizi, K. Global optimization of cerebral cortex layout. Proc. Natl Acad. Sci. USA 101, 1081–1086 (2004).
Langford, J. & Zhang, T. The Epoch-Greedy algorithm for multi-armed bandits with side information. In Advances in Neural Information Processing Systems Vol. 20, 817–824 (2008).
Usunier, N., Synnaeve, G., Lin, Z. & Chintala, S. Episodic exploration for deep deterministic policies: an application to starcraft micromanagement tasks. In Proc. International Conference on Learning Representations (2017).
Bello, I., Pham, H., Le, Q. V., Norouzi, M. & Bengio, S. Neural combinatorial optimization with reinforcement learning. Preprint at https://arxiv.org/abs/1611.09940 (2016).
Mirhoseini, A. et al. Device placement optimization with reinforcement learning. In Proc. International Conference on Machine Learning 2430–2439 (PMLR, 2017).
Mirhoseini, A. et al. A hierarchical model for device placement. In Proc. International Conference on Learning Representations (2018).
Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal policy optimization algorithms. Preprint at https://arxiv.org/abs/1707.06347 (2017).
Obermeier, B., Ranke, H. & Johannes, F. M. Kraftwerk: a versatile placement approach. In Proc. 2005 International Symposium on Physical Design 242–244 (ACM, 2005).
Spindler, P., Schlichtmann, U. & Johannes, F. M. Kraftwerk2 – a fast force-directed quadratic placement approach using an accurate net model. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 27, 1398–1411 (2008).
Viswanathan, N. et al. RQL: global placement via relaxed quadratic spreading and linearization. In Proc. Design Automation Conference 453–458 (ACM/IEEE, 2007).
Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In Proc. 32nd International Conference on Machine Learning 448–456 (JMLR, 2015).
Nair, V. & Hinton, G. E. Rectified linear units improve restricted Boltzmann machines. In Proc. International Conference on Machine Learning 807–814 (Omnipress, 2010).
Zaruba, F. & Benini, L. The cost of application-class processing: energy and performance analysis of a Linux-ready 1.7-GHz 64-Bit RISC-V core in 22-nm FDSOI technology. IEEE Trans. Very Large Scale Integr. VLSI Syst. 27, 2629–2640 (2019).
RePlAce software – the OpenROAD project https://github.com/The-OpenROAD-Project/RePlAce (2020).
Karypis, G. & Kumar, V. Hmetis: a hypergraph partitioning package http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview (1998).
Alpert, C. J., Hagen, L. W. & Kahng, A. B. A hybrid multilevel/genetic approach for circuit partitioning. In Proc. APCCAS’96 – Asia Pacific Conference on 1012 Circuits and Systems 298–301 (IEEE, 1996).
Caldwell, A. E., Kahng, A. B. & Markov, I. L. Improved algorithms for hypergraph 1014 bipartitioning. In Proc. 2000 Design Automation Conference 661–666 (IEEE, 2000).
Chen, H. et al. An algebraic multigrid solver for analytical placement with layout 1017 based clustering. In Proc. 40th annual Design Automation Conference 794–799 (ACM, 2003); 10.1145/775832.776034.
Alpert, C., Kahng, A., Nam, G.-J., Reda, S. & Villarrubia, P. A semi-persistent clustering technique for vlsi circuit placement. In Proc. 2005 International Symposium on Physical Design, 200–207 (ACM, 2005).
Fogaça, M., Kahng, A. B., Reis, R. & Wang, L. Finding placement-relevant clusters with fast modularity-based clustering. In Proc. 24th Asia and South Pacific Design Automation Conference 569–576 (ACM, 2019); https://doi.org/10.1145/3287624.3287676.
Fogaça, M. et al. On the superiority of modularity-based clustering for deter mining placement-relevant clusters. Integration 74, 32–44 (2020).
Kahng, A. B. Futures for partitioning in physical design (tutorial). In Proc. 1998 International Symposium on Physical Design 190–193 (ACM, 1998); https://doi.org/10.1145/274535.274563.
Shahookar, K. & Mazumder, P. VLSI cell placement techniques. ACM Comput. Surv. 23, 143–220 (1991).
Caldwell, A. E., Kahng, A. B., Mantik, S., Markov, I. L. & Zelikovsky, A. On wirelength estimations for row-based placement. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 18, 1265–1278 (1999).
Kahng, A. B. & Xu, X. Accurate pseudo-constructive wirelength and congestion estimation. In Proc. 2003 International Workshop on System-Level Interconnect Prediction 61–68 (ACM, 2003); https://doi.org/10.1145/639929.639942.
Kahng, A. B. & Reda, S. A tale of two nets: studies of wirelength progression in physical design. In Proc. 2006 International Workshop on System-Level Interconnect Prediction |17–24 (ACM, 2006); https://doi.org/10.1145/1117278.1117282.
Kim, M.-C., Viswanathan, N., Alpert, C. J., Markov, I. L. & Ramji, S. MAPLE: Multilevel Adaptive Placement for Mixed-Size Designs. In Proc. 2012 ACM International Symposium on International Symposium on Physical Design 193–200 (ACM, 2012).
Nazi, A., Hang, W., Goldie, A., Ravi, S. & Mirhoseini, A. GAP: generalizable approximate graph partitioning framework. In International Conference on Learning Representations Workshop (2019).
Zhou, Y. et al. GDP: generalized device placement for dataflow graphs. Preprint at https://arxiv.org/abs/1910.01578 (2019).
Zhang, M. & Chen, Y. Link prediction based on graph neural networks. In Proc. International Conference on Neural Information Processing 5171–5181 (Curran Associates Inc., 2018).
Xie, Z. et al. RouteNet: routability prediction for mixed-size designs using convolutional neural network. In 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) 1–8 (IEEE, 2018).
hMETIS – hypergraph and circuit partitioning manual http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download.
Dunlop, A. E. & Kernighan, B. W. A procedure for placement of standard-cell VLSI circuits. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 4, 92–98 (1985).
Cheng C. K. & Kuh. E. S. Module placement based on resistive network optimization. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 3, 218–225 (1984).
Tsay, R.-S., Kuh, E. & Hsu, C.-P. Proud: a fast sea-of-gates placement algorithm. In Proc. Design Automation Conference 1988, 318–323 (IEEE, 1988).
Agnihotri, A., Ono, S. & Madden, P. Recursive bisection placement: Feng Shui 5.0 implementation details. In Proc. International Symposium on Physical Design 230–232 (ACM, 2005).
Alpert, C. et al. Analytical engines are unnecessary in top-down partitioning based placement. VLSI Des. 10, 99–116 (2002).
Kahng, A. B., Reda, S. & Wang, Q. Architecture and details of a high quality, large-scale analytical placer. In IEEE/ACM International Conference on Computer-Aided Design 2005 891–898 (IEEE, 2005).
Kahng, A. B. & Wang, Q. An analytic placer for mixed-size placement and timing.driven placement. In IEEE/ACM International Conference on Computer Aided Design 2004 565–572 (IEEE, 2004).
Kahng, A. B. & Wang, Q. Implementation and extensibility of an analytic placer. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 24, 734–747 (2005).
Chen, T.-C., Jiang, Z.-W., Hsu, T.-C., Chen, H.-C. & Chang, Y.-W. A High-quality mixed-size analytical placer considering preplaced blocks and density constraints. In Proc. 2006 IEEE/ACM International Conference on Computer-Aided Design 187–192 (ACM, 2006).
Naylor, W., Donelly, R. & Sha, L. Non-linear optimization system and method for wire length and delay optimization for an automatic electric circuit placer. US Patent US6301693B1 (2001).
Lu, J., Zhuang, H., Kang, I., Chen, P. & Cheng, C.-K. Eplace-3d: electrostatics based placement for 3d-ics. In International Symposium on Physical Design 11–18 (ACM, 2016).
Hsu, M.-K., Chang, Y.-W. & Balabanov, V. TSV-aware analytical placement for 3D IC designs. In Proc. 48th Annual Design Automation Conference 664–669 (ACM, 2011).
Chen, T., Jiang, Z., Hsu, T., Chen, H. & Chang, Y. NTUplace3: an analytical placer for large-scale mixed-size designs with preplaced blocks and density constraints. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 27, 1228–1240 (2008).
Kim, M.-C. & Markov, I. L. ComPLx: a competitive primal-dual Lagrange optimization for global placement. In Design Automation Conference 2012 747– 755 (ACM, 2012).
Brenner, U., Struzyna, M. & Vygen, J. BonnPlace: placement of leading-edge chips by advanced combinatorial algorithms. Trans. Comp.-Aided Des. Integ.Cir. Sys. 27, 1607–1620 (2008).
Lin, T., Chu, C., Shinnerl, J. R., Bustany, I. & Nedelchev, I. POLAR: placement based on novel rough legalization and refinement. In Proc. International Conference on Computer-Aided Design 357–362 (IEEE, 2013).
Lu, J. et al. ePlace-MS: electrostatics-based placement for mixed-size circuits. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 34, 685–698 (2015).
Lin, Y. et al. DREAMPlace: deep learning toolkit-enabled GPU acceleration for modern VLSI placement. In Design Automation Conference 1–6 (ACM/IEEE, 2019).
Kahng, A. B. Machine learning applications in physical design: recent results and directions. In Proc. 2018 International Symposium on Physical Design 68–73 (ACM, 2018); https://doi.org/10.1145/3177540.3177554.
Kahng, A. B. Reducing time and effort in ic implementation: a roadmap of challenges and solutions. In Proc. 55th Annual Design Automation Conference (ACM, 2018); https://doi.org/10.1145/3195970.3199854.
Ajayi, T. et al. Toward an open-source digital flow: first learnings from the openroad project. In Proc. 56th Annual Design Automation Conference 2019 (ACM, 2019); https://doi.org/10.1145/3316781.3326334.
Huang, Y. et al. Routability-driven macro placement with embedded CNN-based prediction model. In Design, Automation & Test in Europe Conference & Exhibition 180–185 (IEEE, 2019).
Khalil, E., Dai, H., Zhang, Y., Dilkina, B. & Song, L. Learning combinatorial optimization algorithms over graphs. Adv. Neural Inf. Process Syst. 30, 6348–6358 (2017).
Zoph, B. & Le, Q. V. Neural architecture search with reinforcement learning. In Proc. International Conference on Learning Representations (2017).
Addanki, R., Venkatakrishnan, S. B., Gupta, S., Mao, H. & Alizadeh, M. Learning generalizable device placement algorithms for distributed machine learning. Adv. Neural Inf. Process Syst. 32, 3981–3991 (2019).
Paliwal, A. et al. Reinforced genetic algorithm learning for optimizing computation graphs. In Proc. International Conference on Learning Representations (2020).
Zhou, Y. et al. Transferable graph optimizers for ML compilers. Prepint at https://arxiv.org/abs/2010.12438 (2021).
Barrett, T. D., Clements, W. R., Foerster, J. N. & Lvovsky, A. I. Exploratory combinatorial optimization with reinforcement learning. Preprint at https://arxiv.org/abs/1909.04063 (2020).
Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. Prepint at https://arxiv.org/abs/1609.02907 (2016).