nature.com

Moon-forming impactor as a source of Earth’s basal mantle anomalies - Nature

  • ️Asimow, Paul D.
  • ️Wed Nov 01 2023
  • Garnero, E. J., McNamara, A. K. & Shim, S. H. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci. 9, 481–489 (2016).

    Article  CAS  ADS  Google Scholar 

  • Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450, 866–869 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  • Canup, R. M. & Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  • Kokubo, E. & Ida, S. Orbital evolution of protoplanets embedded in a swarm of planetesimals. Icarus 114, 247–257 (1995).

    Article  ADS  Google Scholar 

  • Cameron, A. G. W. & Ward, W. R. The origin of the Moon. Abstr. Lunar Planet. Sci. Conf. 7, 120–122 (1976).

    ADS  Google Scholar 

  • Ringwood, A. E. Volatile and siderophile element geochemistry of the Moon: a reappraisal. Earth Planet. Sci. Lett. 111, 537–555 (1992).

    Article  CAS  ADS  Google Scholar 

  • Nie, N. X. & Dauphas, N. Vapor drainage in the protolunar disk as the cause for the depletion in volatile elements of the Moon. Astrophys. J. 884, L48 (2019).

    Article  CAS  ADS  Google Scholar 

  • Lee, C. T. A. et al. Upside-down differentiation and generation of a primordial lower mantle. Nature 463, 930–933 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  • Christensen, U. R. & Hofmann, A. W. Segregation of subducted oceanic crust in the convecting mantle. J. Geophys. Res. 99, 19867–19884 (1994).

    Article  CAS  ADS  Google Scholar 

  • Williams, C. D., Mukhopadhyay, S., Rudolph, M. L. & Romanowicz, B. Primitive helium is sourced from seismically slow regions in the lowermost mantle. Geochem. Geophys. Geosyst. 20, 4130–4145 (2019).

    Article  CAS  ADS  Google Scholar 

  • Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  • Desch, S. J. & Robinson, K. L. A unified model for hydrogen in the Earth and Moon: no one expects the Theia contribution. Chemie der Erde 79, 125546 (2019).

    Article  ADS  Google Scholar 

  • Pepin, R. O. & Porcelli, D. Origin of noble gases in the terrestrial planets. Rev. Mineral. Geochem. 47, 191–246 (2002).

    Article  CAS  Google Scholar 

  • Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008).

    Article  CAS  ADS  Google Scholar 

  • Will, P., Busemann, H., Riebe, M. E. I. & Maden, C. Indigenous noble gases in the Moon’s interior. Sci. Adv. 8, 1–9 (2022).

    Article  Google Scholar 

  • Stewart, S. et al. The shock physics of giant impacts: key requirements for the equations of state. AIP Conf. Proc. 2272, 080003 (2020).

    Article  Google Scholar 

  • Kegerreis, J. A., Eke, V. R., Massey, R. J., Sandnes, T. D. & Teodoro, L. F. A. Immediate origin of the Moon as a post-impact satellite. Astrophys. J. Lett. 937, L40 (2022).

    Article  ADS  Google Scholar 

  • Deng, H. et al. Enhanced mixing in Giant Impact simulations with a new Lagrangian method. Astrophys. J. 870, 127 (2019).

    Article  CAS  ADS  Google Scholar 

  • Deng, H. et al. Primordial Earth mantle heterogeneity caused by the Moon-forming Giant Impact? Astrophys. J. 887, 211 (2019).

    Article  CAS  ADS  Google Scholar 

  • Cottaar, S. & Lekic, V. Morphology of seismically slow lower-mantle structures. Geophys. J. Int. 207, 1122–1136 (2016).

    Article  ADS  Google Scholar 

  • Kegerreis, J. A. et al. Planetary giant impacts: convergence of high-resolution simulations using efficient spherical initial conditions and SWIFT. Mon. Not. R. Astron. Soc. 487, 5029–5040 (2019).

    Article  CAS  ADS  Google Scholar 

  • Deguen, R., Landeau, M. & Olson, P. Turbulent metal–silicate mixing, fragmentation, and equilibration in magma oceans. Earth Planet. Sci. Lett. 391, 274–287 (2014).

    Article  CAS  ADS  Google Scholar 

  • Dauphas, N., Burkhardt, C., Warren, P. H. & Fang-Zhen, T. Geochemical arguments for an Earth-like Moon-forming impactor. Philos. Trans. R. Soc. A 372, 20130244 (2014).

    Article  ADS  Google Scholar 

  • Pahlevan, K., Stevenson, D. J. & Eiler, J. M. Chemical fractionation in the silicate vapor atmosphere of the Earth. Earth Planet. Sci. Lett. 301, 433–443 (2011).

    Article  CAS  ADS  Google Scholar 

  • Meier, M. M. M., Reufer, A. & Wieler, R. On the origin and composition of Theia: constraints from new models of the Giant Impact. Icarus 242, 316–328 (2014).

    Article  CAS  ADS  Google Scholar 

  • Robinson, K. L. et al. Water in evolved lunar rocks: evidence for multiple reservoirs. Geochim. Cosmochim. Acta 188, 244–260 (2016).

    Article  CAS  ADS  Google Scholar 

  • Connolly, J. A. D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).

    Article  CAS  ADS  Google Scholar 

  • Connolly, J. A. D. The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst. 10, 1–19 (2009).

    Article  Google Scholar 

  • Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals – II. Phase equilibria. Geophys. J. Int. 184, 1180–1213 (2011).

    Article  CAS  ADS  Google Scholar 

  • Nakajima, M. & Stevenson, D. J. Melting and mixing states of the Earth’s mantle after the Moon-forming impact. Earth Planet. Sci. Lett. 427, 286–295 (2015).

    Article  CAS  ADS  Google Scholar 

  • Gurnis, M. The effects of chemical density differences on convective mixing in the Earth’s mantle. J. Geophys. Res., Solid Earth 91, 11407–11419 (1986).

    Article  Google Scholar 

  • Tackley, P. J. in The Core‐Mantle Boundary Region (eds Gurnis, M., Wysession, M. E., Knittle, E. & Buffet, B. A.) 231–253 (American Geophysical Union, 1998).

  • Nakagawa, T., Tackley, P. J., Deschamps, F. & Connolly, J. A. D. The influence of MORB and harzburgite composition on thermo-chemical mantle convection in a 3-D spherical shell with self-consistently calculated mineral physics. Earth Planet. Sci. Lett. 296, 403–412 (2010).

    Article  CAS  ADS  Google Scholar 

  • Gu, T., Li, M., McCammon, C. & Lee, K. K. M. Redox-induced lower mantle density contrast and effect on mantle structure and primitive oxygen. Nat. Geosci. 9, 723–727 (2016).

    Article  CAS  ADS  Google Scholar 

  • Yuan, Q. & Li, M. Instability of the African large low-shear-wave-velocity province due to its low intrinsic density. Nat. Geosci. 15, 334–339 (2022).

    Article  CAS  ADS  Google Scholar 

  • McNamara, A. K. & Zhong, S. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437, 1136–1139 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  • O’Neill, C., Marchi, S., Zhang, S. & Bottke, W. Impact-driven subduction on the Hadean Earth. Nat. Geosci. 10, 793–797 (2017).

    Article  ADS  Google Scholar 

  • Hernlund, J. W. & Houser, C. On the statistical distribution of seismic velocities in Earth’s deep mantle. Earth Planet. Sci. Lett. 265, 423–437 (2008).

    Article  CAS  ADS  Google Scholar 

  • Lei, W. et al. Global adjoint tomography – model GLAD-M25. Geophys. J. Int. 223, 1–21 (2020).

    Article  ADS  Google Scholar 

  • Elkins-Tanton, L. T. Magma oceans in the inner Solar System. Annu. Rev. Earth Planet. Sci. 40, 113–139 (2012).

    Article  CAS  ADS  Google Scholar 

  • Abe, Y. Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter. 1, 27–39 (1997).

    Article  ADS  Google Scholar 

  • Solomatov, V. S. in Treatise on Geophysics 1st edn, Vol. 9 (ed. Schubert, G.) 91–119 (Elsevier, 2007).

  • Maurice, M. et al. Onset of solid-state mantle convection and mixing during magma ocean solidification. J. Geophys. Res., Planets 122, 577–598 (2017).

    Article  ADS  Google Scholar 

  • Boukaré, C. E., Parmentier, E. M. & Parman, S. W. Timing of mantle overturn during magma ocean solidification. Earth Planet. Sci. Lett. 491, 216–225 (2018).

    Article  ADS  Google Scholar 

  • Labrosse, S., Morison, A., Deguen, R. & Alboussière, T. Rayleigh–Bénard convection in a creeping solid with melting and freezing at either or both its horizontal boundaries. J. Fluid Mech. 846, 5–36 (2018).

    Article  MathSciNet  CAS  MATH  ADS  Google Scholar 

  • Agrusta, R. et al. Mantle convection interacting with magma oceans. Geophys. J. Int. 220, 1878–1892 (2020).

    Article  CAS  ADS  Google Scholar 

  • Morison, A., Labrosse, S., Deguen, R. & Alboussière, T. Timescale of overturn in a magma ocean cumulate. Earth Planet. Sci. Lett. 516, 25–36 (2019).

    Article  CAS  ADS  Google Scholar 

  • Becker, T. W., Kellogg, J. B. & O’Connell, R. J. Thermal constraints on the survival of primitive blobs in the lower mantle. Earth Planet. Sci. Lett. 171, 351–365 (1999).

    Article  CAS  ADS  Google Scholar 

  • Lock, S. J., Bermingham, K. R., Parai, R. & Boyet, M. Geochemical constraints on the origin of the Moon and preservation of ancient terrestrial heterogeneities. Space Sci. Rev. 216, 1–46 (2020).

    Article  Google Scholar 

  • Ballmer, M. D., Lourenço, D. L., Hirose, K., Caracas, R. & Nomura, R. Reconciling magma-ocean crystallization models with the present-day structure of the Earth’s mantle. Geochem. Geophys. Geosyst. 18, 2785–2806 (2017).

    Article  CAS  ADS  Google Scholar 

  • Maas, C. & Hansen, U. Dynamics of a terrestrial magma ocean under planetary rotation: a study in spherical geometry. Earth Planet. Sci. Lett. 513, 81–94 (2019).

    Article  CAS  ADS  Google Scholar 

  • Williams, C. D. & Mukhopadhyay, S. Capture of nebular gases during Earth’s accretion is preserved in deep-mantle neon. Nature 565, 78–81 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  • Mundl-Petermeier, A. et al. Temporal evolution of primordial tungsten-182 and 3He/4He signatures in the Iceland mantle plume. Chem. Geol. 525, 245–259 (2019).

    Article  CAS  ADS  Google Scholar 

  • Li, M., McNamara, A. K. & Garnero, E. J. Chemical complexity of hotspots caused by cycling oceanic crust through mantle reservoirs. Nat. Geosci. 7, 366–370 (2014).

    Article  CAS  ADS  Google Scholar 

  • Mulyukova, E., Steinberger, B., Dabrowski, M. & Sobolev, S. V. Survival of LLSVPs for billions of years in a vigorously convecting mantle: replenishment and destruction of chemical anomaly. J. Geophys. Res., Solid Earth 120, 3824–3847 (2015).

    Article  ADS  Google Scholar 

  • Jackson, M. G. et al. Ancient helium and tungsten isotopic signatures preserved in mantle domains least modified by crustal recycling. Proc. Natl Acad. Sci. USA 117, 30993–31001 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Brown, J. M. & Shankland, T. J. Thermodynamic parameters in the Earth as determined from seismic profiles. Geophys. J. R. Astron. Soc. 66, 579–596 (1981).

    Article  MATH  ADS  Google Scholar 

  • Stacey, F. D. A thermal model of the earth. Phys. Earth Planet. Inter. 15, 341–348 (1977).

    Article  ADS  Google Scholar 

  • Canup, R. M., Barr, A. C. & Crawford, D. A. Lunar-forming impacts: high-resolution SPH and AMR-CTH simulations. Icarus 222, 200–219 (2013).

    Article  ADS  Google Scholar 

  • Hosono, N., Saitoh, T. R., Makino, J., Genda, H. & Ida, S. The Giant Impact simulations with density independent smoothed particle hydrodynamics. Icarus 271, 131–157 (2016).

    Article  ADS  Google Scholar 

  • Reinhardt, C. & Stadel, J. Numerical aspects of Giant Impact simulations. Mon. Not. R. Astron. Soc. 467, 4252–4263 (2017).

    Article  ADS  Google Scholar 

  • Ruiz-Bonilla, S. et al. Dealing with density discontinuities in planetary SPH simulations. Mon. Not. R. Astron. Soc. 512, 4660–4668 (2022).

    Article  CAS  ADS  Google Scholar 

  • Hosono, N. & Karato, S. The influence of equation of state on the Giant Impact simulations. J. Geophys. Res., Planets 127, 1–18 (2022).

    Article  Google Scholar 

  • Hosono, N. et al. Unconvergence of very-large-scale Giant Impact simulations. Publ. Astron. Soc. Jpn 69, 1–11 (2017).

    Article  Google Scholar 

  • Meier, T., Reinhardt, C. & Stadel, J. G. The EOS/resolution conspiracy: convergence in proto-planetary collision simulations. Mon. Not. R. Astron. Soc. 1816, 1806–1816 (2021).

    Article  ADS  Google Scholar 

  • Raskin, C. & Owen, J. M. Examining the accuracy of astrophysical disk simulations with a generalized hydrodynamical test problem. Astrophys. J. 831, 26 (2016).

    Article  ADS  Google Scholar 

  • Gabriel, T. S. J. & Allen-Sutter, H. Dependencies of mantle shock heating in pairwise accretion. Astrophys. J. Lett. 915, L32 (2021).

    Article  ADS  Google Scholar 

  • Frontiere, N., Raskin, C. D. & Owen, J. M. CRKSPH – a conservative reproducing kernel smoothed particle hydrodynamics scheme. J. Comput. Phys. 332, 160–209 (2017).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Rosswog, S. Astrophysical smooth particle hydrodynamics. New Astron. Rev. 53, 78–104 (2009).

    Article  CAS  ADS  Google Scholar 

  • Schaller, M. et al. SWIFT: SPH with inter-dependent fine-grained tasking. In Astrophysics Source Code Library, ascl-1805 (2018).

  • Ruiz-Bonilla, S., Eke, V. R., Kegerreis, J. A., Massey, R. J. &Teodoro, L. F. A. The effect of pre-impact spin on the Moon-forming collision. Mon. Not. R. Astron. Soc. 2870, 2861–2870 (2021).

    ADS  Google Scholar 

  • Canup, R. M. Forming a Moon with an Earth-like composition via a giant impact. Science 338, 1052–1056 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Hopkins, P. F. A new class of accurate, mesh-free hydrodynamic simulation methods. Mon. Not. R. Astron. Soc. 450, 53–110 (2015).

    Article  CAS  ADS  Google Scholar 

  • Thompson, S. L. & Lauson, H. S. Improvements in the Chart D Radiation—Hydrodynamic Code. III. Revised Analytic Equation of State. Sandia Report SC-RR-71 0174 (1972).

  • Melosh, H. J. A hydrocode equation of state for SiO2. Meteorit. Planet. Sci. 42, 2079–2098 (2007).

    Article  CAS  ADS  Google Scholar 

  • Fiquet, G. et al. Melting of peridotite to 140 gigapascals. Science 329, 1516–1518 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  • Andrault, D. et al. Solidus and liquidus profiles of chondritic mantle: implication for melting of the Earth across its history. Earth Planet. Sci. Lett. 304, 251–259 (2011).

    Article  CAS  ADS  Google Scholar 

  • Abe, Y. in Evolution of the Earth and Planets (eds Takahashi, E., Jeanloz, R. & Rubie, D.) 41–54 (American Geophysical Union, 1993).

  • Miyazaki, Y. & Korenaga, J. On the timescale of magma ocean solidification and its chemical consequences: 2. Compositional differentiation under crystal accumulation and matrix compaction. J. Geophys. Res., Solid Earth 124, 3399–3419 (2019).

    Article  CAS  ADS  Google Scholar 

  • Nomura, R. et al. Spin crossover and iron-rich silicate melt in the Earth’s deep mantle. Nature 473, 199–202 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  • Andrault, D. et al. Solid–liquid iron partitioning in Earth’s deep mantle. Nature 487, 354–357 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  • Moresi, L. N. & Solomatov, V. S. Numerical investigation of 2D convection with extremely large viscosity variations. Phys. Fluids 7, 2154–2162 (1995).

    Article  MATH  ADS  Google Scholar 

  • Farrell, K. A. O. & Lowman, J. P. Emulating the thermal structure of spherical shell convection in plane-layer geometry mantle convection models. Phys. Earth Planet. Inter. 182, 73–84 (2010).

    Article  ADS  Google Scholar 

  • Tackley, P. J. & King, S. D. Testing the tracer ratio method for modeling active compositional fields in mantle convection simulations. Geochem. Geophys. Geosyst. 4, 1–15 (2003).

    Article  Google Scholar 

  • Schaller, M. et al. Swift: a modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications. Preprint at http://arxiv.org/abs/2305.13380 (2023).

  • Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996).

    Article  CAS  ADS  Google Scholar 

  • Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar