nature.com

Hyperactivation of the RAS signaling pathway in myelodysplastic syndrome with AML1/RUNX1 point mutations - Leukemia

  • ️Kimura, A
  • ️Thu Feb 09 2006
  • Osato M, Asou N, Abdalla E, Hoshino K, Yamasaki H, Okubo T et al. Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood 1999; 93: 1817–1824.

    CAS  PubMed  Google Scholar 

  • Preudhomme C, Warot-Loze D, Roumier C, Grardel-Duflos N, Garand R, Lai JL et al. High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2 alpha B gene in Mo acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21. Blood 2000; 96: 2862–2869.

    CAS  PubMed  Google Scholar 

  • Silva FP, Morolli B, Storlazzi CT, Anelli L, Wessels H, Bezrookove V et al. Identification of RUNX1/AML1 as a classical tumor suppressor gene. Oncogene 2003; 22: 538–547.

    Article  CAS  PubMed  Google Scholar 

  • Harada H, Harada Y, Tanaka H, Kimura A, Inaba T . Implications of somatic mutations in the AML1 gene in radiation-associated and therapy-related myelodysplastic syndrome/acute myeloid leukemia. Blood 2003; 101: 673–680.

    Article  CAS  PubMed  Google Scholar 

  • Christiansen DH, Andersen MK, Pedersen-Bjergaard J . Mutations of AML1 are common in therapy-related myelodysplasia following therapy with alkylating agents and are significantly associated with deletion or loss of chromosome arm 7q and with subsequent leukemic transformation. Blood 2004; 104: 1474–1481.

    Article  CAS  PubMed  Google Scholar 

  • Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 1999; 23: 166–175.

    Article  CAS  PubMed  Google Scholar 

  • Osato M . Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene 2004; 23: 4284–4296.

    Article  CAS  PubMed  Google Scholar 

  • Harada H, Harada Y, Niimi H, Kyo T, Kimura A, Inaba T . High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood 2004; 103: 2316–2324.

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa M, Asai T, Saito T, Yamamoto G, Seo S, Yamazaki I et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 2004; 10: 299–304.

    Article  CAS  PubMed  Google Scholar 

  • Higuchi M, O'Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR . Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 2002; 1: 63–74.

    Article  CAS  PubMed  Google Scholar 

  • Beghini A, Peterlongo P, Ripamonti CB, Larizza L, Cairoli R, Morra E et al. C-kit mutations in core binding factor leukemias. Blood 2000; 95: 726–727.

    CAS  PubMed  Google Scholar 

  • Gilliland DG . Hematologic malignancies. Curr Opin Hematol 2001; 8: 189–191.

    Article  CAS  PubMed  Google Scholar 

  • Matsuno N, Osato M, Yamashita N, Yanagida M, Nanri T, Fukushima T et al. Dual mutations in the AML1 and FLT3 genes are associated with leukemogenesis in acute myeloblastic leukemia of the M0 subtype. Leukemia 2003; 17: 2492–2499.

    Article  CAS  PubMed  Google Scholar 

  • Fenaux P . Chromosome and molecular abnormalities in myelodysplastic syndromes. Int J Hematol 2001; 73: 429–437.

    Article  CAS  PubMed  Google Scholar 

  • Hirai H . Molecular mechanisms of myelodysplastic syndrome. Jpn J Clin Oncol 2003; 33: 153–160.

    Article  PubMed  Google Scholar 

  • Rosenfeld C, List A . A hypothesis for the pathogenesis of myelodysplastic syndromes: implications for new therapies. Leukemia 2000; 14: 2–8.

    Article  CAS  PubMed  Google Scholar 

  • Mitelman F (ed). An International System for Human Cytogenetic Nomenclature (1995): Recommendations of the International Standing Committee on Human Cytogenetic Nomenclature. Basel, Switzerland: S Karger,, 1995.

    Google Scholar 

  • Bowen DT, Frew ME, Rollinson S, Roddam PL, Dring A, Smith MT et al. CYP1A1*2B (Val) allele is overrepresented in a subgroup of acute myeloid leukemia patients with poor-risk karyotype associated with NRAS mutation, but not associated with FLT3 internal tandem duplication. Blood 2003; 101: 2770–2774.

    Article  CAS  PubMed  Google Scholar 

  • Pullarkat VA, Bueso-Ramos C, Lai R, Kroft S, Wilson CS, Pullarkat ST et al. Systemic mastocytosis with associated clonal hematological non-mast-cell lineage disease: analysis of clinicopathologic features and activating c-kit mutations. Am J Hematol 2003; 73: 12–17.

    Article  PubMed  Google Scholar 

  • Tartaglia M, Kalidas K, Shaw A, Song X, Musat DL, van der Burgt I et al. PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet 2002; 70: 1555–1563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Luca A, Buccino A, Gianni D, Mangino M, Giustini S, Richetta A et al. NF1 gene analysis based on DHPLC. Hum Mutat 2003; 21: 171–172.

    Article  PubMed  Google Scholar 

  • Christiansen DH, Andersen MK, Pedersen-Bjergaard J . Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. J Clin Oncol 2001; 19: 1405–1413.

    Article  CAS  PubMed  Google Scholar 

  • Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999; 93: 3074–3080.

    CAS  PubMed  Google Scholar 

  • Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434–2439.

    Article  CAS  PubMed  Google Scholar 

  • Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 2003; 34: 148–150.

    Article  CAS  PubMed  Google Scholar 

  • Fragale A, Tartaglia M, Wu J, Gelb BD . Noonan syndrome-associated SHP2/PTPN11 mutants cause EGF-dependent prolonged GAB1 binding and sustained ERK2/MAPK1 activation. Hum Mutat 2004; 23: 267–277.

    Article  CAS  PubMed  Google Scholar 

  • Chan RJ, Leedy MB, Munugalavadla V, Voorhorst CS, Li Y, Yu M et al. Human somatic PTPN11 mutations induce hematopoietic cell hypersensitivity to granulocyte-macrophage colony stimulating factor. Blood 2005; 105: 3737–3742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loh ML, Vattikuti S, Schubbert S, Reynolds MG, Carlson E, Lieuw KH et al. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood 2004; 103: 2325–2331.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen-Bjergaard J, Andersen MK, Christiansen DH, Nerlov C . Genetic pathways in therapy-related myelodysplasia and acute myeloid leukemia. Blood 2002; 99: 1909–1912.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen-Bjergaard J, Christiansen DH, Andersen MK, Skovby F . Causality of myelodysplasia and acute myeloid leukemia and their genetic abnormalities. Leukemia 2002; 16: 2177–2184.

    Article  CAS  PubMed  Google Scholar 

  • Qian Z, Fernald AA, Godley LA, Larson RA, Le Beau MM . Expression profiling of CD34+ hematopoietic stem/progenitor cells reveals distinct subtypes of therapy-related acute myeloid leukemia. Proc Natl Acad Sci USA 2002; 99: 14925–14930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenson J, Lizhen H, Mufti GJ . Possible co-existence of RAS activation and monosomy 7 in the leukaemic transformation of myelodysplastic syndromes. Leuk Res 1995; 19: 741–748.

    Article  CAS  PubMed  Google Scholar 

  • Christiansen DH, Andersen MK, Pedersen-Bjergaard J . Methylation of p15INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 2003; 17: 1813–1819.

    Article  CAS  PubMed  Google Scholar 

  • Horiike S, Misawa S, Kaneko H, Sasai Y, Kobayashi M, Fujii H et al. Distinct genetic involvement of the TP53 gene in therapy-related leukemia and myelodysplasia with chromosomal losses of Nos 5 and/or 7 and its possible relationship to replication error phenotype. Leukemia 1999; 13: 1235–1242.

    Article  CAS  PubMed  Google Scholar 

  • Hirai H, Kobayashi Y, Mano H, Hagiwara K, Maru Y, Omine M et al. A point mutation at codon 13 of the N-ras oncogene in myelodysplastic syndrome. Nature 1987; 327: 430–432.

    Article  CAS  PubMed  Google Scholar 

  • Johan MF, Bowen DT, Frew ME, Goodeve AC, Wilson GA, Peake IR et al. Mutations in PTPN11 are uncommon in adult myelodysplastic syndromes and acute myeloid leukaemia. Br J Haematol 2004; 124: 843–844.

    Article  CAS  PubMed  Google Scholar 

  • Watkins F, Fidler C, Boultwood J, Wainscoat JS . Mutations in PTPN11 are rare in adult myelodysplastic syndromes and acute myeloid leukemia. Am J Hematol 2004; 76: 417.

    Article  PubMed  Google Scholar 

  • Loh ML, Martinelli S, Cordeddu V, Reynolds MG, Vattikuti S, Lee CM et al. Acquired PTPN11 mutations occur rarely in adult patients with myelodysplastic syndromes and chronic myelomonocytic leukemia. Leuk Res 2005; 29: 459–462.

    Article  CAS  PubMed  Google Scholar 

  • Kaneko H, Horiike S, Nakai H, Ueda Y, Nakao M, Hirakawa K et al. Neurofibromatosis 1 gene (NF1) mutation is a rare genetic event in myelodysplastic syndrome regardless of the disease progression. Int J Hematol 1995; 61: 113–116.

    Article  CAS  PubMed  Google Scholar 

  • Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T et al. Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 1997; 11: 1605–1609.

    Article  CAS  PubMed  Google Scholar 

  • Horiike S, Yokota S, Nakao M, Iwai T, Sasai Y, Kaneko H et al. Tandem duplications of the FLT3 receptor gene are associated with leukemic transformation of myelodysplasia. Leukemia 1997; 11: 1442–1446.

    Article  CAS  PubMed  Google Scholar 

  • Jacks T, Shih TS, Schmitt EM, Bronson RT, Bernards A, Weinberg RA . Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet 1994; 7: 353–361.

    Article  CAS  PubMed  Google Scholar 

  • Le DT, Kong N, Zhu Y, Lauchle JO, Aiyigari A, Braun BS et al. Somatic inactivation of Nf1 in hematopoietic cells results in a progressive myeloproliferative disorder. Blood 2004; 103: 4243–4250.

    Article  CAS  PubMed  Google Scholar 

  • Braun BS, Tuveson DA, Kong N, Le DT, Kogan SC, Rozmus J et al. Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc Natl Acad Sci USA 2004; 101: 597–602.

    Article  CAS  PubMed  Google Scholar 

  • Chan IT, Kutok JL, Williams IR, Cohen S, Kelly L, Shigematsu H et al. Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J Clin Invest 2004; 113: 528–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araki T, Mohi MG, Ismat FA, Bronson RT, Williams IR, Kutok JL et al. Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Nat Med 2004; 10: 849–857.

    Article  CAS  PubMed  Google Scholar 

  • Donovan S, See W, Bonifas J, Stokoe D, Shannon KM . Hyperactivation of protein kinase B and ERK have discrete effects on survival, proliferation, and cytokine expression in Nf1-deficient myeloid cells. Cancer Cell 2002; 2: 507–514.

    Article  CAS  PubMed  Google Scholar 

  • Yokomizo T, Ogawa M, Osato M, Kanno T, Yoshida H, Fujimoto T et al. Requirement of Runx1/AML1/PEBP2alphaB for the generation of haematopoietic cells from endothelial cells. Genes Cells 2001; 6: 13–23.

    Article  CAS  PubMed  Google Scholar 

  • Care RS, Valk PJ, Goodeve AC, Abu-Duhier FM, Geertsma-Kleinekoort WM, Wilson GA et al. Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br J Haematol 2003; 121: 775–777.

    Article  CAS  PubMed  Google Scholar 

  • Wang YY, Zhou GB, Yin T, Chen B, Shi JY, Liang WX et al. AML1-ETO and C-KIT mutation/overexpression in t(8;21) leukemia: implication in stepwise leukemogenesis and response to Gleevec. Proc Natl Acad Sci USA 2005; 102: 1104–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohl TM, Schnittger S, Ellwart JW, Hiddemann W, Spiekermann K . KIT exon 8 mutations associated with core binding factor (CBF) – acute myeloid leukemia (AML) cause hyperactivation of the receptor in response to stem cell factor. Blood 2004; 105: 3319–3321.

    Article  PubMed  Google Scholar 

  • Yang G, Khalaf W, van de Locht L, Jansen JH, Gao M, Thompson MA et al. Transcriptional Repression of the neurofibromatosis-1 tumor suppressor by the t(8;21) fusion protein. Mol Cell Biol 2005; 25: 5869–5879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson EJ, Scherer SW, Osborne L, Tsui LC, Oscier D, Mould S et al. Molecular definition of a narrow interval at 7q22*1 associated with myelodysplasia. Blood 1996; 87: 3579–3586.

    CAS  PubMed  Google Scholar 

  • Grisendi S, Bernardi R, Rossi M, Cheng K, Khandker L, Manova K et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature 2005; 437: 147–153.

    Article  CAS  PubMed  Google Scholar