link.springer.com

Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems - Photochemical & Photobiological Sciences

  • ️Caldwell, M. M.
  • ️Mon Dec 01 2014

References

  1. C. L. Ballaré, M. M. Caldwell, S. D. Flint, S. A. Robinson and J. F. Bornman, Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change, Photochem. Photobiol. Sci., 2011, 10, 226–241.

    PubMed  Google Scholar 

  2. C. E. Williamson, R. G. Zepp, R. M. Lucas, S. Madronich, A. T. Austin, C. L. Ballaré, M. Norval, B. Sulzberger, A. F. Bais, R. L. McKenzie, S. A. Robinson, D.-P. Häder, N. D. Paul and J. F. Bornman, Solar ultraviolet radiation in a changing climate, Nat. Clim. Change, 2014, 4, 434–441.

    Google Scholar 

  3. R. M. Cory, B. C. Crump, J. A. Dobkowski and G. W. Kling, Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the Arctic, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 3429–3434.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. H. Lee, T. Rahn and H. L. Throop, An accounting of C-based trace gas release during abiotic plant litter degradation, Global Change Biol., 2012, 18, 1185–1195.

    Google Scholar 

  5. D. W. J. Thompson, S. Solomon, P. J. Kushner, M. H. England, K. M. Grise and D. J. Karoly, Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change, Nat. Geosci., 2011, 4, 741–749.

    CAS  Google Scholar 

  6. J. Turner, N. E. Barrand, T. J. Bracegirdle, P. Convey, D. A. Hodgson, M. Jarvis, A. Jenkins, G. Marshall, M. P. Meredith, H. Roscoe, J. Shanklin, J. French, H. Goosse, M. Guglielmin, J. Gutt, S. Jacobs, M. C. Kennicutt II, V. Masson-Delmotte, P. Mayewski, F. Navarro, S. Robinson, T. Scambos, M. Sparrow, C. Summerhayes, K. Speer and A. Klepikov, Antarctic climate change and the environment: An update, Polar Rec., 2014, 50, 237–259.

    Google Scholar 

  7. S. A. Robinson, D. J. Erickson III, Not just about sunburn-the ozone hole’s profound effect on climate has significant implications for Southern Hemisphere ecosystems, Global Change Biol., 2014 DOI: 10.1111/gcb.12739.

    Google Scholar 

  8. J. J. Wargent, E. M. Elfadly, J. P. Moore and N. D. Paul, Increased exposure to UV-B radiation during early development leads to enhanced photoprotection and improved long-term performance in Lactuca sativa, Plant, Cell Environ., 2011, 34, 1401–1413.

    CAS  PubMed  Google Scholar 

  9. J. J. Wargent and B. R. Jordan, From ozone depletion to agriculture: understanding the role of UV radiation in sustainable crop production, New Phytol., 2013, 197, 1058–1076.

    CAS  PubMed  Google Scholar 

  10. W. J. Zhang, L. O. Björn, The effect of ultraviolet radiation on the accumulation of medicinal compounds in plants, Fitoterapia, 2009, 80, 207–218.

    CAS  PubMed  Google Scholar 

  11. B. Mauch-Mani and F. Mauch, The role of abscisic acid in plant-pathogen interactions, Curr. Opin. Plant Biol., 2005, 8, 409–414.

    CAS  PubMed  Google Scholar 

  12. D. Comont, J. Martinez Abaigar, A. Albert, P. Aphalo, D. R. Causton, F. L. Figueroa, A. Gaberscik, L. Llorens, M.-T. Hauser, M. A. K. Jansen, M. Kardefelt, P. de la Coba Luque, S. Neubert, E. Núñez-Olivera, J. Olsen, M. Robson, M. Schreiner, R. Sommaruga, Å. Strid, S. Torre, M. Turunen, S. Veljovic-Jovanovic, D. Verdaguer, M. Vidovic, J. Wagner, J. B. Winkler, G. Zipoli and D. Gwynn-Jones, UV responses of Lolium perenne raised along a latitudinal gradient across Europe: a filtration study, Physiol. Plant., 2012, 145, 604–618.

    CAS  PubMed  Google Scholar 

  13. P. S. Searles, S. D. Flint and M. M. Caldwell, A meta-analysis of plant field studies simulating stratospheric ozone depletion, Oecologia, 2001, 127, 1–10.

    PubMed  Google Scholar 

  14. K. K. Newsham and S. A. Robinson, Responses of plants in polar regions to UVB exposure: a meta-analysis, Global Change Biol., 2009, 15, 2574–2589.

    Google Scholar 

  15. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley, IPCC: Summary for Policymakers, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, 2013.

    Google Scholar 

  16. F. Bussotti, F. Ferrini, M. Pollastrini and A. Fini, The challenge of Mediterranean sclerophyllous vegetation under climate change: From acclimation to adaptation, Environ. Exp. Bot., 2014, 103, 80–98.

    Google Scholar 

  17. WMO, Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project-Report No. 52, Report No., Geneva, Switzerland, 2011, p. 516.

    Google Scholar 

  18. S. Madronich, M. Shao, S. R. Wilson, K. R. Solomon, J. Longstrethe and X. Tang, Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with changing climate: Implications for human and environmental health, Photochem. Photobiol. Sci., 2015, 14, this issue.

  19. L. Guidi, E. Degl’Innocenti, D. Remorini, S. Biricolti, A. Fini, F. Ferrini, F. P. Nicese and M. Tattini, The impact of UV-radiation on the physiology and biochemistry of Ligustrum vulgare exposed to different visible-light irradiance, Environ. Exp. Bot., 2011, 70, 88–95.

    CAS  Google Scholar 

  20. M. M. Caldwell, L. O. Björn, J. F. Bornman, S. D. Flint, G. Kulandaivelu, A. H. Teramura and M. Tevini, Effects of increased solar ultraviolet radiation on terrestrial ecosystems, J. Photochem. Photobiol., B, 1998, 46, 40–52.

    CAS  Google Scholar 

  21. J. D. Turnbull, S. J. Leslie and S. A. Robinson, Desiccation protects two Antarctic mosses from ultraviolet-B induced DNA damage, Funct. Plant Biol., 2009, 36, 214–221.

    CAS  PubMed  Google Scholar 

  22. D. Verdaguer, L. Llorens, M. Bernal and J. Badosa, Photomorphogenic effects of UVB and UVA radiation on leaves of six Mediterranean sclerophyllous woody species subjected to two different watering regimes at the seedling stage, Environ. Exp. Bot., 2012, 79, 66–75.

    Google Scholar 

  23. M. Bernal, L. Llorens, J. Badosa and D. Verdaguer, Interactive effects of UV radiation and water availability on seedlings of six woody Mediterranean species, Physiol. Plant., 2013, 147, 234–247.

    CAS  PubMed  Google Scholar 

  24. C. A. Mazza, P. I. Gimenez, A. G. Kantolic, C. L. Ballaré, Beneficial effects of solar UV-B radiation on soybean yield mediated by reduced insect herbivory under field conditions, Physiol. Plant., 2013, 147, 307–315.

    CAS  PubMed  Google Scholar 

  25. H. Bandurska, J. Niedziela and T. Chadzinikolau, Separate and combined responses to water deficit and UV-B radiation, Plant Sci., 2013, 213, 98–105.

    CAS  PubMed  Google Scholar 

  26. H. Bandurska and M. Cieslak, The interactive effect of water deficit and UV-B radiation on salicylic acid accumulation in barley roots and leaves, Environ. Exp. Bot., 2013, 94, 9–18.

    CAS  Google Scholar 

  27. L. He, X. Jia, Z. Gao and R. Li, Genotype-dependent responses of wheat (Triticum aestivum L.) seedlings to drought, UV-B radiation and their combined stresses, Afr. J. Biotechnol., 2011, 10, 4046–4056.

    CAS  Google Scholar 

  28. E. A. Kravets, L. B. Zelena, E. P. Zabara and Y. B. Blume, Adaptation strategy of barley plants to UV-B radiation, Emirates J. Food Agric., 2012, 24, 632–645.

    Google Scholar 

  29. V. Virjamo, S. Sutinen, R. Julkunen-Tiitto, Combined effect of elevated UVB, elevated temperature and fertilization on growth, needle structure and phytochemistry of young Norway spruce (Picea abies) seedlings, Global Change Biol., 2014, 20, 2252–2260.

    Google Scholar 

  30. S. Singh, R. Kumari, M. Agrawal and S. B. Agrawal, Modification in growth, biomass and yield of radish under supplemental UV-B at different NPK levels, Ecotoxicol. Environ. Saf., 2011, 74, 897–903.

    CAS  PubMed  Google Scholar 

  31. T. S. L. Lau, E. Eno, G. Goldstein, C. Smith and D. A. Christopher, Ambient levels of UV-B in Hawaii combined with nutrient deficiency decrease photosynthesis in near-isogenic maize lines varying in leaf flavonoids: Flavonoids decrease photoinhibition in plants exposed to UV-B, Photosynthetica, 2006, 44, 394–403.

    CAS  Google Scholar 

  32. X.-R. Guo, B.-W. Chang, Y.-G. Zu, Z.-H. Tang, The impacts of increased nitrate supply on Catharanthus roseus growth and alkaloid accumulations under ultraviolet-B stress, J. Plant Interact., 2014, 9, 640–646.

    Google Scholar 

  33. J. K. Holopainen and J. Gershenzon, Multiple stress factors and the emission of plant VOCs, Trends Plant Sci., 2010, 15, 176–184.

    CAS  PubMed  Google Scholar 

  34. M. Possell and F. Loreto, The role of volatile organic compounds in plant resistance to abiotic stresses: responses and mechanisms, in Biology, controls and models of tree volatile organic compound emissions, ed. Ü. Niinemets and R. K. Monson, Springer, Berlin, 2013, pp. 209–235.

    Google Scholar 

  35. A. Guenther, Upscaling biogenic volatile compound emissions from leaves to landscapes, in Biology, controls and models of tree volatile organic compound emissions, ed. Ü. Niinemets and R. K. Monson, Springer, Berlin, 2013, pp. 391–414.

    Google Scholar 

  36. J. Peñuelas and M. Staudt, BVOCs and global change, Trends Plant Sci., 2010, 15, 133–144.

    PubMed  Google Scholar 

  37. M. J. Potosnak, B. M. Baker, L. LeStourgeon, S. M. Disher, K. L. Griffin, M. S. Bret-Harte and G. Starr, Isoprene emissions from a tundra ecosystem, Biogeosciences, 2013, 10, 871–889.

    Google Scholar 

  38. A. T. Archibald, J. G. Levine, N. L. Abraham, M. C. Cooke, P. M. Edwards, D. E. Heard, M. E. Jenkin, A. Karunaharan, R. C. Pike, P. S. Monks, D. E. Shallcross, P. J. Telford, L. K. Whalley and J. A. Pyle, Impacts of HOx regeneration and recycling in the oxidation of isoprene: Consequences for the composition of past, present and future atmospheres, Geophys. Res. Lett., 2011, 38, GL046520.

    Google Scholar 

  39. J. Llusia, L. Llorens, M. Bernal, D. Verdaguer and J. Penuelas, Effects of UV radiation and water limitation on the volatile terpene emission rates, photosynthesis rates, and stomatal conductance in four Mediterranean species, Acta Physiol. Plant., 2012, 34, 757–769.

    CAS  Google Scholar 

  40. T. D. Sharkey, Is it useful to ask why plants emit isoprene?, Plant, Cell Environ., 2013, 36, 517–520.

    CAS  PubMed  Google Scholar 

  41. P. Tiiva, R. Rinnan, P. Faubert, J. Räsänen, T. Holopainen, E. Kyro and J. K. Holopainen, Isoprene emission from a subarctic peatland under enhanced UV-B radiation, New Phytol., 2007, 176, 346–355.

    CAS  PubMed  Google Scholar 

  42. P. Faubert, P. Tiiva, A. Rinnan, J. Räsänen, J. K. Holopainen, T. Holopainen, E. Kyrö and R. Rinnan, Non-methane biogenic volatile organic compound emissions from a subarctic peatland under enhanced UV-B radiation, Ecosystems, 2010, 13, 860–873.

    CAS  Google Scholar 

  43. D. J. Erickson III, B. Sulzberger, R. Zepp, A. T. Austin and N. Paul, Effects of stratospheric ozone depletion, solar UV radiation, and climate change on biogeochemical cycling: Interactions and feedbacks, Photochem. Photobiol. Sci., 2015, 14, this issue.

  44. F. Loreto and J. P. Schnitzler, Abiotic stresses and induced BVOCs, Trends Plant Sci., 2010, 15, 154–166.

    CAS  PubMed  Google Scholar 

  45. R. Rinnan, S. Saarnio, J. K. Haapala, S. K. Mörsky, P. J. Martikainen, J. Silvola and T. Holopainen, Boreal peatland ecosystems under enhanced UV-B radiation and elevated tropospheric ozone concentration, Environ. Exp. Bot., 2013, 90, 43–52.

    CAS  Google Scholar 

  46. Z. P. Wang, S. X. Chang, H. Chen and X. G. Han, Widespread non-microbial methane production by organic compounds and the impact of environmental stresses, Earth-Sci. Rev., 2013, 127, 193–202.

    CAS  Google Scholar 

  47. F. Keppler, J. T. G. Hamilton, M. Brass and T. Rockmann, Methane emissions from terrestrial plants under aerobic conditions, Nature, 2006, 439, 187–191.

    CAS  PubMed  Google Scholar 

  48. A. McLeod and F. Keppler, Vegetation, in Methane and Climate Change, ed. D. S. Reay, P. Smith and A. van Amstel, Earthscan, London and Washington, D.C., 2010, pp. 74–96.

    Google Scholar 

  49. A. A. Bloom, J. Lee-Taylor, S. Madronich, D. J. Messenger, P. I. Palmer, D. S. Reay and A. R. McLeod, Global methane emission estimates from ultraviolet irradiation of terrestrial plant foliage, New Phytol., 2010, 187, 417–425.

    CAS  PubMed  Google Scholar 

  50. R. G. Zepp, D. J. Erickson, N. D. Paul and B. Sulzberger, Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks, Photochem. Photobiol. Sci., 2011, 10, 261–279.

    CAS  PubMed  Google Scholar 

  51. A. R. McLeod, S. C. Fry, G. J. Loake, D. J. Messenger, D. S. Reay, K. A. Smith, B.-W. Yun, Ultraviolet radiation drives methane emissions from terrestrial plant pectins, New Phytol., 2008, 180, 124–132.

    CAS  PubMed  Google Scholar 

  52. D. Bruhn, T. N. Mikkelsen, M. M. M. Rolsted, H. Egsgaard and P. Ambus, Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen, Plant Biol., 2014, 16, 512–516.

    CAS  PubMed  Google Scholar 

  53. D. Bruhn, I. M. Møller, T. N. Mikkelsen and P. Ambus, Terrestrial plant methane production and emission, Physiol. Plant., 2012, 144, 201–209.

    CAS  PubMed  Google Scholar 

  54. F. Althoff, A. Jugold and F. Keppler, Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide, Chemosphere, 2010, 80, 286–292.

    CAS  PubMed  Google Scholar 

  55. D. J. Messenger, A. R. McLeod and S. C. Fry, The role of ultraviolet radiation, photosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin, Plant, Cell Environ., 2009, 32, 1–9.

    CAS  PubMed  Google Scholar 

  56. S. R. Pangala, S. Moore, E. R. C. Hornibrook and V. Gauci, Trees are major conduits for methane egress from tropical forested wetlands, New Phytol., 2013, 197, 524–531.

    PubMed  Google Scholar 

  57. S. K. Mörsky, J. K. Haapala, R. Rinnan, S. Saarnio, H. Suokanerva, K. Latola, E. Kyrö, J. Silvola, T. Holopainen and P. J. Martikainen, Minor long-term effects of ultraviolet-B radiation on methane dynamics of a subarctic fen in Northern Finland, Biogeochemistry, 2012, 108, 233–243.

    Google Scholar 

  58. Y. Lou, W. Zhou and L. Ren, Elevated UV-B radiation increased CH4 emission in transgenic rice from a paddy soil, Agric., Ecosyst. Environ., 2012, 151, 16–20.

    CAS  Google Scholar 

  59. A. F. Bais, R. L. McKenzie, P. J. Aucamp, M. Ilyas, S. Madronich, G. Bernhard and K. Tourpali, Ozone depletion and climate change: Impacts on UV radiation, Photochem. Photobiol. Sci., 2015, 14, this issue.

  60. Y. Wu, L. M. Polvani and R. Seager, The Importance of the Montreal Protocol in Protecting Earth’s Hydroclimate, J. Clim., 2013, 26, 4049–4068.

    Google Scholar 

  61. J. Turner, R. A. Bindschadler, P. Convey, G. Di Prisco, E. Fahrbach, J. Gutt, D. A. Hodgson, P. A. Mayewski and C. P. Summerhayes, Antarctic Climate Change and the Environment, SCAR, Cambridge, 2009, http://acce.scar.org/wiki/Antarctic_Climate_Change_and_the_Environmentwiki/Antarctic_Climate_Change_and_the_Environment, accessed 1/11/2014.

    Google Scholar 

  62. E. R. Thomas, T. J. Bracegirdle, J. Turner and E. W. Wolff, A 308 year record of climate variability in West Antarctica, Geophys. Res. Lett., 2013, 40, 5492–5496.

    Google Scholar 

  63. P. Convey, R. Bindschadler, G. di Prisco, E. Fahrbach, J. Gutt, D. A. Hodgson, P. A. Mayewski, C. P. Summerhayes and J. Turner, Antarctic climate change and the environment, Antarct. Sci., 2009, 21, 541–563.

    Google Scholar 

  64. H. Korhonen, K. S. Carslaw, P. M. Forster, S. Mikkonen, N. D. Gordon and H. Kokkola, Aerosol climate feedback due to decadal increases in Southern Hemisphere wind speeds, Geophys. Res. Lett., 2010, 37, GL041320.

    Google Scholar 

  65. J. Turner and G. J. Marshall, Climate Change in the Polar Regions, Cambridge University Press, Cambridge, 2011.

    Google Scholar 

  66. D. A. Dixon, P. A. Mayewski, I. D. Goodwin, G. J. Marshall, R. Freeman, K. A. Maasch and S. B. Sneed, An ice-core proxy for northerly air mass incursions into West Antarctica, Int. J. Climatol., 2012, 32, 1455–1465.

    Google Scholar 

  67. N. J. Abram, R. Mulvaney, F. Vimeux, S. J. Phipps, J. Turner and M. H. England, Evolution of the Southern Annular Mode during the past millennium, Nat. Clim. Change, 2014, 4, 564–569.

    CAS  Google Scholar 

  68. P. Convey, S. L. Chown, A. Clarke, D. K. A. Barnes, S. Bokhorst, V. Cummings, H. W. Ducklow, F. Frati, T. G. A. Green, S. Gordon, H. J. Griffiths, C. Howard-Williams, A. H. L. Huiskes, J. Laybourn-Parry, W. B. Lyons, A. McMinn, S. A. Morley, L. S. Peck, A. Quesada, S. A. Robinson, S. Schiaparelli and D. H. Wall, The spatial structure of Antarctic biodiversity, Ecol. Monogr., 2014, 84, 203–244.

    Google Scholar 

  69. L. J. Clarke, S. A. Robinson, Q. Hua, D. J. Ayre and D. Fink, Radiocarbon bomb spike reveals biological effects of Antarctic climate change, Global Change Biol., 2012, 18, 301–310.

    Google Scholar 

  70. D. A. Hodgson, D. Roberts, A. McMinn, E. Verleyen, B. Terry, C. Corbett and W. Vyverman, Recent rapid salinity rise in three East Antarctic lakes, J. Paleolimnol., 2006, 36, 385–406.

    Google Scholar 

  71. M. Cataldo, H. Evangelista, J. C. Simoes, R. H. M. Godoi, I. Simmonds, M. H. Hollanda, I. Wainer, F. Aquino, R. Van Grieken, Mineral dust variability in central West Antarctica associated with ozone depletion, Atmos. Chem. Phys., 2013, 13, 2165–2175.

    Google Scholar 

  72. J. R. McConnell, A. J. Aristarain, J. R. Banta, P. R. Edwards, J. C. Simões, 20th-Century doubling in dust archived in an Antarctic Peninsula ice core parallels climate change and desertification in South America, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 5743–5748.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. R. Villalba, A. Lara, M. H. Masiokas, R. Urrutia, B. H. Luckman, G. J. Marshall, I. A. Mundo, D. A. Christie, E. R. Cook, R. Neukom, K. Allen, P. Fenwick, J. A. Boninsegna, A. M. Srur, M. S. Morales, D. Araneo, J. G. Palmer, E. Cuq, J. C. Aravena, A. Holz and C. LeQuesne, Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode, Nat. Geosci., 2012, 5, 793–798.

    CAS  Google Scholar 

  74. C. Böning, A. Dispert, M. Visbeck, R. SR and F. Schwarzkopf, The response of the Antarctic Circumpolar Current to recent climate change, Nat. Geosci., 2008, 1, 864–869.

    Google Scholar 

  75. A. Purich and S. W. Son, Impact of Antarctic ozone depletion and recovery on Southern Hemisphere precipitation, evaporation, and extreme changes, J. Clim., 2012, 25, 3145–3154.

    Google Scholar 

  76. S. M. Kang, L. M. Polvani, J. C. Fyfe, S. W. Son, M. Sigmond and G. J. P. Correa, Modeling evidence that ozone depletion has impacted extreme precipitation in the austral summer, Geophys. Res. Lett., 2013, 40, 4054–4059.

    Google Scholar 

  77. IPCC, Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. WGII AR5 Summary for Policymakers., Report No., IPCC, Geneva, Switzerland, 2014, p. 44.

    Google Scholar 

  78. D. Manatsa, Y. Morioka, S. K. Behera, T. Yamagata and C. H. Matarira, Link between Antarctic ozone depletion and summer warming over southern Africa, Nat. Geosci., 2013, 6, 934–939.

    CAS  Google Scholar 

  79. J. Perlwitz, ATMOSPHERIC SCIENCE Tug of war on the jet stream, Nat. Clim. Change, 2011, 1, 29–31.

    Google Scholar 

  80. J. Y. King, L. A. Brandt and E. C. Adair, Shedding light on plant litter decomposition: advances, implications and new directions in understanding the role of photodegradation, Biogeochemistry, 2012, 111, 57–81.

    Google Scholar 

  81. X. Song, C. Peng, H. Jiang, Q. Zhu and W. Wang, Direct and indirect effects of UV-B exposure on litter decomposition: a meta-analysis, PLoS One, 2013, 8, e68858.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. P. W. Barnes, H. L. Throop, S. R. Archer, D. D. Breshears, R. L. McCulley and M. A. Tobler, Sunlight and soil-litter mixing: Drivers of litter decomposition in drylands, Prog. Bot., 2015, 76, 273–302.

    CAS  Google Scholar 

  83. H. A. L. Henry, K. Brizgys and C. B. Field, Litter decomposition in a California annual grassland: Interactions between photodegradation and litter layer thickness, Ecosystems, 2008, 11, 545–554.

    CAS  Google Scholar 

  84. Y. Lin and J. Y. King, Effects of UV exposure and litter position on decomposition in a California grassland, Ecosystems, 2014, 17, 158–168.

    CAS  Google Scholar 

  85. P. W. Barnes, H. L. Throop, D. B. Hewins, M. L. Abbene and S. R. Archer, Soil coverage reduces photodegradation and promotes the development of soil-microbial films on dryland leaf litter, Ecosystems, 2012, 15, 311–321.

    CAS  Google Scholar 

  86. A. T. Austin, C. L. Ballaré, Dual role of lignin in plant litter decomposition in terrestrial ecosystems, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 4618–4622.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. G. W. Schade, R. M. Hofmann and P. J. Crutzen, CO emissions from degrading plant matter (I). Measurements, Tellus, Ser. B, 1999, 51, 889–908.

    Google Scholar 

  88. Q. Gao, F. Garcia-Pichel, Microbial ultraviolet sunscreens, Nat. Rev. Microbiol., 2011, 9, 791–802.

    CAS  PubMed  Google Scholar 

  89. X. Song, H. L. Zhang, H. Jiang, L. A. Donaldson and H. L. Wang, Influence of elevated UV-B radiation on leaf litter chemistry and subsequent decomposition in humid subtropical China, J. Soils Sediments, 2013, 13, 846–853.

    CAS  Google Scholar 

  90. L. Selbmann, D. Isola, L. Zucconi and S. Onofri, Resistance to UV-B induced DNA damage in extreme-tolerant cryptoendolithic Antarctic fungi: detection by PCR assays, Fungal Biol., 2011, 115, 937–944.

    CAS  PubMed  Google Scholar 

  91. S. A. Alharbi, How do bacteria survive UV irradiation in the stratosphere?, J. Food Agric. Environ., 2012, 10, 843–845.

    CAS  Google Scholar 

  92. H. Kadivar and A. E. Stapleton, Ultraviolet radiation alters maize phyllosphere bacterial diversity, Microb. Ecol., 2003, 45, 353–361.

    CAS  PubMed  Google Scholar 

  93. N. D. Paul, J. P. Moore, M. McPherson, C. Lambourne, P. Croft, J. C. Heaton and J. J. Wargent, Ecological responses to UV radiation: interactions between the biological effects of UV on plants and on associated organisms, Physiol. Plant., 2012, 145, 565–581.

    CAS  PubMed  Google Scholar 

  94. W. K. Smith, W. Gao, H. Steltzer, M. D. Wallenstein and R. Tree, Moisture availability influences the effect of ultraviolet-B radiation on leaf litter decomposition, Global Change Biol., 2010, 16, 484–495.

    Google Scholar 

  95. B. Foereid, J. Bellarby, W. Meier-Augenstein and H. Kemp, Does light exposure make plant litter more degradable?, Plant Soil, 2010, 333, 275–285.

    CAS  Google Scholar 

  96. S. Ma, D. Baldocchi, J. Hatala, J. M. Detto and J. Yuste, Are rain-induced ecosystem respiration pulses enhanced by legacies of antecedent photodegradation in semi-arid environments?, Agric. For. Meteorol., 2012, 154-155, 203–213.

    Google Scholar 

  97. L. M. Mayer, K. R. Thornton, L. L. Schick, J. D. Jastrow and J. W. Harden, Photodissolution of soil organic matter, Geoderma, 2012, 170, 314–321.

    CAS  Google Scholar 

  98. G. Agati, C. Brunetti, M. Di Ferdinando, F. Ferrini, S. Pollastri and M. Tattini, Functional roles of flavonoids in photoprotection: New evidence, lessons from the past, Plant Physiol. Biochem., 2013, 72, 35–45.

    CAS  PubMed  Google Scholar 

  99. L. A. Brandt, C. Bohnet and J. Y. King, Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems, J. Geophys. Res.: Biogeosci., 2009, 114, G02004.

    Google Scholar 

  100. S. Rutledge, D. I. Campbell, D. Baldocchi and L. A. Schipper, Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter, Global Change Biol., 2010, 16, 3065–3074.

    Google Scholar 

  101. S. M. Uselman, K. A. Snyder, R. R. Blank and T. J. Jones, UVB exposure does not accelerate rates of litter decomposition in a semi-arid riparian ecosystem, Soil Biol. Biochem., 2011, 43, 1254–1265.

    CAS  Google Scholar 

  102. W. Parton, W. L. Silver, I. C. Burke, L. Grassens, M. E. Harmon, W. S. Currie, J. Y. King, E. C. Adair, L. A. Brandt, S. C. Hart and B. Fasth, Global-scale similarities in nitrogen release patterns during long-term decomposition, Science, 2007, 315, 361–364.

    CAS  PubMed  Google Scholar 

  103. E. C. Adair, W. J. Parton, S. J. Del Grosso, W. L. Silver, M. E. Harmon, S. A. Hall, I. C. Burke and S. C. Hart, Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates, Global Change Biol., 2008, 14, 2636–2660.

    Google Scholar 

  104. A. T. Austin, Has water limited our imagination for aridland biogeochemistry?, Trends Ecol. Evol., 2011, 26, 229–235.

    PubMed  Google Scholar 

  105. X. Song, H. Jiang, Z. Zhang, G. Zhou, S. Zhang and C. Peng, Interactive effects of elevated UV-B radiation and N deposition on decomposition of Moso bamboo litter, Soil Biol. Biochem., 2014, 69, 11–16.

    CAS  Google Scholar 

  106. M. M. Caldwell, J. F. Bornman, C. L. Ballaré, S. D. Flint and G. Kulandaivelu, Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors, Photochem. Photobiol. Sci., 2007, 6, 252–266.

    CAS  PubMed  Google Scholar 

  107. X. Bao, Q. Li, J. Hua, T. Zhao and W. Liang, Interactive effects of elevated ozone and UV-B radiation on soil nematode diversity, Ecotoxicology, 2014, 23, 11–20.

    CAS  PubMed  Google Scholar 

  108. B. Li, A. Krumbein, S. Neugart, L. Li and M. Schreiner, Mixed cropping with maize combined with moderate UV-B radiations lead to enhanced flavonoid production and root growth in faba bean, J. Plant Interact., 2012, 7, 333–340.

    CAS  Google Scholar 

  109. S. Cesco, G. Neumann, N. Tomasi, R. Pinton and L. Weisskopf, Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition, Plant Soil, 2010, 329, 1–25.

    CAS  Google Scholar 

  110. S. Hassan and U. Mathesius, The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions, J. Exp. Bot., 2012, 63, 3429–3444.

    CAS  PubMed  Google Scholar 

  111. S. Chen, S. Xiao and R. M. Callaway, Light intensity alters the allelopathic effects of an exotic invader, Plant Ecol. Diversity, 2012, 5, 521–526.

    Google Scholar 

  112. S. Sharma and K. N. Guruprasad, Enhancement of root growth and nitrogen fixation in Trigonella by UV-exclusion from solar radiation, Plant Physiol. Biochem., 2012, 61, 97–102.

    CAS  PubMed  Google Scholar 

  113. U. N. Nielsen and D. H. Wall, The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic?, Ecol. Lett., 2013, 16, 409–419.

    PubMed  Google Scholar 

  114. C. L. Ballaré, Light regulation of plant defense, Annu. Rev. Plant Biol., 2014, 65, 335–363.

    PubMed  Google Scholar 

  115. C. L. Ballaré, C. A. Mazza, A. T. Austin and R. Pierik, Canopy Light and Plant Health, Plant Physiol., 2012, 160, 145–155.

    PubMed  PubMed Central  Google Scholar 

  116. F. Kuhlmann, C. Müller, Impacts of ultraviolet radiation on interactions between plants and herbivorous Insects: A chemo-ecological perspective, Prog. Bot., 2011, 72, 305–347.

    CAS  Google Scholar 

  117. C. A. Mazza, M. M. Izaguirre, J. Zavala, A. L. Scopel, C. L. Ballaré, Insect perception of ambient ultraviolet-B radiation, Ecol. Lett., 2002, 5, 722–726.

    Google Scholar 

  118. C. A. Mazza, M. M. Izaguirre, J. Curiale, C. L. Ballaré, A look into the invisible. Ultraviolet-B sensitivity in an insect (Caliothrips phaseoli) revealed through a behavioural action spectrum, Proc. R. Soc. London, Ser. B, 2010, 277, 367–373.

    CAS  Google Scholar 

  119. T. S. Gunasekera, N. D. Paul and P. G. Ayres, The effects of ultraviolet-B (UV-B: 290-320 nm) radiation on blister blight disease of tea (Camellia sinensis), Plant Pathol., 1997, 46, 179–185.

    Google Scholar 

  120. P. V. Demkura, C. L. Ballaré, UVR8 Mediates UV-B-Induced Arabidopsis Defense Responses against Botrytis cinerea by Controlling Sinapate Accumulation, Mol. Plant, 2012, 5, 642–652.

    PubMed  Google Scholar 

  121. M. C. Rousseaux, R. Julkunen-Tiitto, P. S. Searles, A. L. Scopel, P. J. Aphalo, C. L. Ballaré, Solar UV-B radiation affects leaf quality and insect herbivory in the southern beech tree Nothofagus antarctica, Oecologia, 2004, 138, 505–512.

    PubMed  Google Scholar 

  122. P. V. Demkura, G. Abdala, I. T. Baldwin, C. L. Ballaré, Jasmonate-dependent and -independent pathways mediate specific effects of solar ultraviolet-B radiation on leaf phenolics and antiherbivore defense, Plant Physiol., 2010, 152, 1084–1095.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. S. T. Đinh, I. Gális and I. T. Baldwin, UVB radiation and 17-hydroxygeranyllinalool diterpene glycosides provide durable resistance against mirid (Tupiocoris notatus) attack in field-grown Nicotiana attenuata plants, Plant, Cell Environ., 2013, 36, 590–606.

    PubMed  Google Scholar 

  124. J. W. Stratmann, B. A. Stelmach, E. W. Weiler and C. A. Ryan, UVB/UVA radiation activates a 48 kDa myelin basic protein kinase and potentiates wound signaling in tomato leaves, Photochem. Photobiol., 2000, 71, 116–123.

    CAS  PubMed  Google Scholar 

  125. M. M. Izaguirre, A. L. Scopel, I. T. Baldwin, C. L. Ballaré, Convergent responses to stress. Solar ultraviolet-B radiation and Manduca sexta herbivory elicit overlapping transcriptional responses in field-grown plants of Nicotiana longiflora, Plant Physiol., 2003, 132, 1755–1767.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. L. Rizzini, J. J. Favory, C. Cloix, D. Faggionato, A. O’Hara, E. Kaiserli, R. Baumeister, E. Schafer, F. Nagy, G. I. Jenkins and R. Ulm, Perception of UV-B by the Arabidopsis UVR8 Protein, Science, 2011, 332, 103–106.

    CAS  PubMed  Google Scholar 

  127. G. I. Jenkins, The UV-B Photoreceptor UVR8: From Structure to Physiology, Plant Cell, 2014, 26, 21–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. L. O. Morales, M. Brosché, J. Vainonen, G. I. Jenkins, J. J. Wargent, N. Sipari, A. Strid, A. V. Lindfors, R. Tegelberg and P. J. Aphalo, Multiple roles for UV RESISTANCE LOCUS8 in regulating gene expression and metabolite accumulation in Arabidopsis under solar ultraviolet radiation, Plant Physiol., 2013, 161, 744–759.

    CAS  PubMed  Google Scholar 

  129. C. T. Ruhland, M. J. Dyslin and J. D. Krenz, Wyoming big sagebrush screens ultraviolet radiation more effectively at higher elevations, J. Arid. Environ., 2013, 96, 19–22.

    Google Scholar 

  130. P. W. Barnes, A. R. Kersting, S. D. Flint, W. Beyschlag and R. J. Ryel, Adjustments in epidermal UV-transmittance of leaves in sun-shade transitions, Physiol. Plant., 2013, 149, 200–213.

    CAS  PubMed  Google Scholar 

  131. L. J. Clarke and S. A. Robinson, Cell wall-bound ultraviolet-screening compounds explain the high ultraviolet tolerance of the Antarctic moss, Ceratodon purpureus, New Phytol., 2008, 179, 776–783.

    PubMed  Google Scholar 

  132. S. A. Robinson and M. J. Waterman, Sunsafe bryophytes: photoprotection from excess and damaging solar radiation, Adv. Photosynth. Respir., 2014, 37, 113–130.

    Google Scholar 

  133. P. W. Barnes, S. D. Flint, J. R. Slusser, W. Gao and R. J. Ryel, Diurnal changes in epidermal UV transmittance of plants in naturally high UV environments, Physiol. Plant., 2008, 133, 363–372.

    CAS  PubMed  Google Scholar 

  134. S. Sumbele, M. N. Fotelli, D. Nikolopoulos, G. Tooulakou, V. Liakoura, G. Liakopoulos, P. Bresta, E. Dotsika, M. A. Adams and G. Karabourniotis, Photosynthetic capacity is negatively correlated with the concentration of leaf phenolic compounds across a range of different species, AoB PLANTS, 2012, 2012, DOI: 10.1093/aobpla/pls025.

  135. T. L. Turnbull, A. Barlow and M. A. Adams, Photosynthetic benefits of ultraviolet-A to Pimelea ligustrina, a woody shrub of sub-alpine Australia, Oecologia, 2013, 173, 375–385.

    PubMed  Google Scholar 

  136. M. L. Falcone-Ferreyra, S. P. Rius and P. Casati, Flavonoids: biosynthesis, biological functions, and biotechnological applications, Front. Plant Sci., 2012, 3, 222.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. D. Magri, Past UV-B flux from fossil pollen: prospects for climate, environment and evolution, New Phytol., 2011, 192, 310–312.

    PubMed  Google Scholar 

  138. B. H. Lomax, W. T. Fraser, M. A. Sephton, T. V. Callaghan, S. Self, M. Harfoot, J. A. Pyle, C. H. Wellman and D. J. Beerling, Plant spore walls as a record of long-term changes in ultraviolet-B radiation, Nat. Geosci., 2008, 1, 592–596.

    CAS  Google Scholar 

  139. J. Rozema, P. Blokker, M. A. Mayoral Fuertes and R. Broekman, UV-B absorbing compounds in present-day and fossil pollen, spores, cuticles, seed coats and wood: evaluation of a proxy for solar UV radiation, Photochem. Photobiol. Sci., 2009, 8, 1233–1243.

    CAS  PubMed  Google Scholar 

  140. B. H. Lomax, W. T. Fraser, G. Harrington, S. Blackmore, M. A. Sephton and N. B. W. Harris, A novel palaeoaltimetry proxy based on spore and pollen wall chemistry, Earth Planet. Sci. Lett., 2012, 353-354, 22–28.

    CAS  Google Scholar 

  141. J. Royles, J. Ogée, L. Wingate, D. A. Hodgson, P. Convey and H. Griffiths, Carbon isotope evidence for recent climate-related enhancement of CO2 assimilation and peat accumulation rates in Antarctica, Global Change Biol., 2012, 18, 3112–3124.

    Google Scholar 

  142. G. J. Jordan, A critical framework for the assessment of biological palaeoproxies: predicting past climate and levels of atmospheric CO2 from fossil leaves, New Phytol., 2011, 192, 29–44.

    PubMed  Google Scholar 

  143. K. J. Willis, A. Feurdean, H. J. B. Birks, A. E. Bjune, E. Breman, R. Broekman, J. A. Grytnes, M. New, J. S. Singarayer and J. Rozema, Quantification of UV-B flux through time using UV-B-absorbing compounds contained in fossil Pinus sporopollenin, New Phytol., 2011, 192, 553–560.

    CAS  PubMed  Google Scholar 

  144. Y. X. Wang and M. Frei, Stressed food - The impact of abiotic environmental stresses on crop quality, Agric., Ecosyst. Environ., 2011, 141, 271–286.

    Google Scholar 

  145. D. Gwynn-Jones, A. G. Jones, A. Waterhouse, A. Winters, D. Comont, J. Scullion, R. Gardias, B. J. Graae, J. A. Lee and T. V. Callaghan, Enhanced UV-B and Elevated CO2 Impacts Sub-Arctic Shrub Berry Abundance, Quality and Seed Germination, Ambio, 2012, 41(Suppl. 3), 256–268.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. M. Schreiner, I. Mewis, S. Huyskens-Keil, M. A. K. Jansen, R. Zrenner, J. B. Winkler, N. O’Brien and A. Krumbein, UV-B-induced secondary plant metabolites - potential benefits for plant and human health, Crit. Rev. PlantSci., 2012, 31, 229–240.

    CAS  Google Scholar 

  147. B. Liu, X.-B. Liu, Y.-S. Li and S. J. Herbert, Effects of enhanced UV-B radiation on seed growth characteristics and yield components in soybean, Field Crops Res., 2013, 154, 158–163.

    Google Scholar 

  148. J. A. Zavala, C. A. Mazza, F. M. Dillon, H. D. Chludil, C. L. Ballaré, Soybean resistance to stink bugs (Nezara viridula and Piezodorus guildinii) increases with exposure to solar UV-B radiation and correlates with isoflavonoid content in pods under field conditions, Plant, Cell Environ., 2014, DOI: 10.1111/pce.12368.

    Google Scholar 

  149. Y. Dolzhenko, C. M. Bertea, A. Occhipinti, S. Bossi and M. E. Maffei, UV-B modulates the interplay between terpenoids and flavonoids in peppermint (Mentha piperita L.), J. Photochem. Photobiol., B, 2010, 100, 67–75.

    CAS  PubMed  Google Scholar 

  150. S. M. Gregan, J. J. Wargent, L. Liu, J. Shinkle, R. Hofmann, C. Winefield, M. Trought and B. Jordan, Effects of solar ultraviolet radiation and canopy manipulation on the biochemical composition of Sauvignon Blanc grapes, Aust. J. Grape Wine Res., 2012, 18, 227–238.

    CAS  Google Scholar 

  151. P. Carbonell-Bejerano, M. P. Diago, J. Martinez-Abaigar, J. M. Martinez-Zapater, J. Tardaguila, E. Nunez-Olivera, Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses, BMC Plant Biol., 2014, 14, 183.

    PubMed  PubMed Central  Google Scholar 

  152. K. Suklje, G. Antalick, Z. Coetzee, L. M. Schmidtke, H. B. Cesnik, J. Brandt, W. J. du Toit, K. Lisjak and A. Deloire, Effect of leaf removal and ultraviolet radiation on the composition and sensory perception of Vitis vinifera L. cv. Sauvignon Blanc wine, Aust. J. Grape Wine Res., 2014, 20, 223–233.

    CAS  Google Scholar 

  153. M. Gil, R. Bottini, F. Berli, M. Pontin, M. Fernanda Silva and P. Piccoli, Volatile organic compounds characterized from grapevine (Vitis vinifera L. cv. Malbec) berries increase at pre-harvest and in response to UV-B radiation, Phytochemistry, 2013, 96, 148–157.

    CAS  PubMed  Google Scholar 

  154. F. J. Berli, R. Alonso, R. Bressan-Smith and R. Bottini, UV-B impairs growth and gas exchange in grapevines grown in high altitude, Physiol. Plant., 2013, 149, 127–140.

    CAS  PubMed  Google Scholar 

  155. J. J. Wargent, B. C. W. Nelson, T. K. McGhie and P. W. Barnes, Acclimation to UV-B radiation and visible light in Lactuca sativa involves up-regulation of photosynthetic performance and orchestration of metabolome-wide responses, Plant, Cell Environ., 2014, DOI: 10.1111/pce.12392.

    Google Scholar 

  156. R. H. Douglas and G. Jeffery, The spectral transmission of ocular media suggests ultraviolet sensitivity is widespread among mammals, Proc. R. Soc. London, Ser. B, 2014, 281, 20132995.

    CAS  Google Scholar 

  157. H. Tsujita and C. E. Plummer, Bovine ocular squamous cell carcinoma, Vet. Clin. North Am. Food Anim. Pract., 2010, 26, 511–529.

    PubMed  Google Scholar 

  158. P. Sampath-Wiley and L. S. Jahnke, A new filter that accurately mimics the solar UV-B spectrum using standard UV lamps: the photochemical properties, stabilization and use of the urate anion liquid filter, Plant, Cell Environ., 2011, 34, 261–269.

    CAS  PubMed  Google Scholar 

  159. P. J. Aphalo, A. Albert, L. O. Björn, A. McLeod, T. M. Robson and E. Rosenqvist, Beyond the visible: A handbook of best practice in plant UV photobiology, in COST Action FA0906 UV4growth, University of Helsinki, Department of Biosciences, Division of Plant Biology, Helsinki, Finland, 2012, p. 176, https://helda.helsinki.fi/handle/10138/37558/handle/10138/37558.

    Google Scholar 

  160. K. Baczynska, J. B. O’Hagan, A. J. Pearson and P. Eriksen, Temperature Correction of UV Spectral Solar Measurements for ICEPURE Project, Photochem. Photobiol., 2011, 87, 1464–1467.

    CAS  PubMed  Google Scholar 

  161. G. Seckmeyer, A. Bais, G. Bernhard, M. Blumthaler, S. Drüke, P. Kiedron, K. Lantz, R. McKenzie and S. Riechelmann, Instruments to Measure Solar Ultraviolet Radiation WMO/TD-No. 1538, Part 4: Array Spectroradiometers (vol. No. 191), World Meteorological Organization, Geneva, 2010.

    Google Scholar 

  162. R. M. Lucas, M. Norval, R. E. Neale, A. R. Young, F. R. de Gruijl, Y. Takizawa, J. C. van der Leun, The consequences for human health of stratospheric ozone depletion in association with other environmental factors, Photochem. Photobiol. Sci., 2015, 14, this issue.

  163. A. V. Parisi, P. Schouten, N. J. Downs and J. Turner, Solar UV exposures measured simultaneously to all arbitrarily oriented leaves on a plant, J. Photochem. Photobiol., B, 2010, 99, 87–92.

    CAS  PubMed  Google Scholar 

  164. A. V. Parisi, M. G. Kimlin, J. C. F. Wong and M. Wilson, Solar ultraviolet exposures at ground level in tree shade during summer in south east Queensland, Int. J. Environ. Health Res., 2001, 11, 117–127.

    CAS  PubMed  Google Scholar 

  165. G. Seckmeyer, M. Klingebiel, S. Riechelmann, I. Lohse, R. L. McKenzie, J. Ben Liley, M. W. Allen, A.-M. Siani and G. R. Casale, A critical assessment of two types of personal UV dosimeters, Photochem. Photobiol., 2012, 88, 215–222.

    CAS  PubMed  Google Scholar 

  166. J. Turner, A. V. Parisi and D. J. Turnbull, Dosimeter for the measurement of plant damaging solar UV exposures, Agric. For. Meteorol., 2009, 149, 1301–1306.

    Google Scholar 

  167. M. M. Caldwell, Solar UV irradiation and the growth and development of higher plants, Photophysiology, 1971, 6, 131–177.

    CAS  Google Scholar 

  168. A. V. Parisi, P. Schouten and D. J. Turnbull, UV dosimeter based on Polyphenylene Oxide for the measurement of UV exposures to plants and humans over extended periods, in NIWA 2010 UV Workshop: UV radiation and its effects-an update 2010, Queenstown, New Zealand, 2010, pp. 25–26.

    Google Scholar 

Download references