cambridge.org

Bioavailability of phyto-oestrogens | British Journal of Nutrition | Cambridge Core

  • ️Tue Mar 25 2025

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The term phyto-oestrogen encompasses isoflavone compounds, such as genistein and daidzein, found predominantly in soya products and the lignans, such as matairesinol and secoisolariciresinol, found in many fruits, cereals and in flaxseed. There is evidence that they have potential health benefits in man particularly against hormone-dependent diseases such as breast and prostate cancers and osteoporosis. This has led to intense interest in their absorption and biotransformation in man. The metabolism of isoflavones and lignans in animals and man is complex and involves both mammalian and gut microbial processes. Isoflavones are present predominantly as glucosides in most commercially available soya products; there is evidence that they are not absorbed in this form and that their bioavailability requires initial hydrolysis of the sugar moiety by intestinal β-glucosidases. After absorption, phyto-oestrogens are reconjugated predominantly to glucuronic acid and to a lesser degree to sulphuric acid. Only a small portion of the free aglycone has been detected in blood, demonstrating that the rate of conjugation is high. There is extensive further metabolism of isoflavones (to equol and O-desmethylangolensin) and lignans (to enterodiol and enterolactone) by gut bacteria. In human subjects, even those on controlled diets, there is large interindividual variation in the metabolism of isoflavones and lignans, particularly in the production of the gut bacterial metabolite equol (from daidzein). Factors influencing absorption and metabolism of phyto-oestrogens include diet and gut microflora.

References

Adlercreutz, H, Fotsis, T, Bannwart, C, Wähälä, K, Brunow, G & Hase, T (1991) Isotope dilution gas chromatographic–mass spectrometric method for the determination of lignans and isoflavonoids in human urine, including identification of genistein. Clinica Chimica Acta 119, 263278.CrossRefGoogle Scholar

Adlercreutz, H, Hockerstedt, K, Bannwart, C, Bloigu, S, Hamalainen, E, Fotsis, T & Ollus, A (1987) Effect of dietary components including lignans and phytoestrogens on enterohepatic circulation and liver metabolism of estrogens and on sex hormone binding globulin. Journal of Steroid Biochemistry 27, 11351144.CrossRefGoogle ScholarPubMed

Adlercreutz, H, Markkanen, H & Watanabe, S (1993) Plasma concentrations of phyto-oestrogens in Japanese men. Lancet 342, 12091210.CrossRefGoogle ScholarPubMed

Adlercreutz, H, van der Wildt, J, Kinzel, J, Attalla, H, Wähälä, K, Makela, T, Hase, T & Fotsis, T (1995) Lignan and isoflavonoid conjugates in human urine. Journal of Steroid Biochemistry and Molecular Biology 52, 97103.CrossRefGoogle ScholarPubMed

Adlercreutz, H, Yamada, T, Wähälä, K & Watanabe, S (1999) Maternal and neonatal phytoestrogens in Japanese women during birth. American Journal of Obstetrics and Gynecology 180, 737743.CrossRefGoogle ScholarPubMed

Andlauer, W, Kolb, J & Furst, P (2000) Absorption and metabolism of genistin in the isolated rat small intestine. FEBS Letters 475, 127130.CrossRefGoogle ScholarPubMed

Axelson, M, Kirk, DN, Farrant, RD, Cooley, G, Lawson, AM & Setchell, KDR (1982) The identification of the weak oestrogen equol in human urine. Biochemical Journal 201, 353357.CrossRefGoogle ScholarPubMed

Axelson, M, Sjovall, J, Gustafsson, BE & Setchell, KDR (1984) Soya — a dietary source of the non-steroidal oestrogen equol in man and animals. Journal of Endocrinology 102, 4956.CrossRefGoogle Scholar

Bannwart, C, Adlercreutz, H, Wähälä, K, Brunow, G & Hase, T (1987) Isoflavonic phytoestrogens in humans — identification and metabolism. European Journal of Cancer and Clinical Oncology 23, 1732.CrossRefGoogle Scholar

Bannwart, C, Fotsis, T, Heikkinen, R & Adlercreutz, H (1984) Identification of the isoflavonic phytoestrogen daidzein in human urine. Clinica Chimica Acta 136, 165172.CrossRefGoogle ScholarPubMed

Bordello, SP, Setchell, KDR, Axelson, M & Lawson, AM (1985) Production and metabolism of lignans by the human fecal flora. Journal of Applied Bacteriology 58, 3743.CrossRefGoogle Scholar

Bowey, E, Adlercreutz, H & Rowland, I (2003) Metabolisms of isoflavones and lignans by the gut microflora — a study in germfree and human flora associated rats. Food and Chemical Toxicology in press.CrossRefGoogle Scholar

Brienholt, V & Larsen, JC (1998) Detection of weak estrogenic flavonoids using a recombinant yeast strain and a modified MCF7 cell proliferation assay. Chemical Research Toxicology 11, 622629.CrossRefGoogle Scholar

Cassidy, A (1991) Plant oestrogens and their relation to hormonal status in women. PhD Thesis, University of Cambridge.Google Scholar

Chang, YC & Nair, MG (1995) Metabolism of daidzein and genistein by intestinal bacteria. Journal of Natural Products 58, 18921896.CrossRefGoogle ScholarPubMed

Coldham, NG, Howells, LC, Santi, A, Monteissa, C, Langlais, C, King, LC, Macpherson, DD & Sauer, MJ (1999) Biotransformation of genistein in the rat: elucidation of metabolite structure by production mass fragmentology. Journal of Steroid Biochemistry and Molecular Biology 70, 169184.CrossRefGoogle ScholarPubMed

Coldham, NG & Sauer, MJ (2000) Pharmacokinetics of [14C]genistein in the rat: gender-related differences, potential mechanisms of biological action and implications for human health. Toxicology and Applied Pharmacology 164, 206215.CrossRefGoogle ScholarPubMed

Coward, L, Barnes, NC, Setchell, KDR & Barnes, S (1993) Genistein, daidzein and their β-glycoside conjugates: antitumor isoflavones in soybean foods from American and Asian diets. Journal of Agriculture and Food Chemistry 41, 19611967.CrossRefGoogle Scholar

Day, AJ, DuPont, MS & Saxon, Ridley S (1998) Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver and beta glucosidase activity. FEBS Letters 436, 7175.CrossRefGoogle ScholarPubMed

Duncan, AM, Merz-Demlow, BE, Xu, X, Phipps, WR & Kurzer, MS (2000) Premenopausal equol excretors show plasma hormone profiles associated with lowered risk of breast cancer. Cancer Epidemiology, Biomarkers & Prevention 9, 581586.Google ScholarPubMed

Hargreaves, DF, Potten, CS, Harding, C, Shaw, LE, Morton, MS, Roberts, SA, Howell, A & Bundred, NJ (1999) Two-week soy supplementation has an estrogenic effect on normal premenopausal breast. Journal of Clinical Endocrinology and Metabolism 84, 40174024.Google ScholarPubMed

Heinonen, S, Nurmi, T, Liukkonen, K, Poutanen, K, Wähälä, K, Deyama, T, Nishibe, S & Adlercreutz, H (2001) In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol. Journal of Agriculture and Food Chemistry 49, 31783186.CrossRefGoogle ScholarPubMed

Heinonen, S, Wähälä, K & Adlercreutz, H (1999) Identification of isoflavone metabolites dihydrodaidzein, dihydrogenistein, 6′-OH-O-DMA and cis-4-OH-equol in human urine by GC-MS using authentic reference compounds. Analytical Biochemistry 274, 211219.CrossRefGoogle Scholar

Hollman, PCH & Katan, MB (1998) Absorption, metabolism and bioavailability of flavonoids. In Flavonoids in Health and Disease, pp. 483522 [CA Rice-Evans and L Packer, editors]. New York: Marcel Dekker.Google Scholar

Hutchins, AM, Slavin, JL & Lampe, JW (1995) Urinary isoflavonoid phytoestrogen and lignan excretion after consumption of fermented and unfermented soy products. Journal of the American Dietetic Association 95, 545551.CrossRefGoogle ScholarPubMed

Ioku, K, Pongpiriyadacha, Y, Konishi, Y, Takei, Y, Nakatani, N & Terao, J (1998) Beta-glucosidase activity in the rat small intestine toward quercetin monoglucosides. Bioscience Biotechnology and Biochemistry 62, 14281431.CrossRefGoogle ScholarPubMed

Izumi, T, Piskula, MK, Osawa, S, Obata, A, Tobe, K, Saito, M, Kataoka, S, Kubota, Y & Kikuchi, M (2000) Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. Journal of Nutrition 130, 16951699.CrossRefGoogle ScholarPubMed

Jackson, MJ (1977) The assessment of the bioavailability of micronutrients: introduction. European Journal of Clinical Nutrition 51, Suppl. 1, S1–S2.Google Scholar

Jacobs, E, Kulling, SE & Metzler, M (1999) Novel metabolites of the mammalian lignans enterolactone and enterodiol in human urine. Journal of Steroid Biochemistry and Molecular Biology 68, 211218.CrossRefGoogle ScholarPubMed

Joannou, GE, Kelly, GE, Reeder, AY, Waring, M & Nelson, C (1995) A urinary profile study of dietary phytoestrogens. The identification and mode of metabolism of new isoflavonoids. Journal of Steroid Biochemistry and Molecular Biology 54, 167184.CrossRefGoogle ScholarPubMed

Karr, SC, Lampe, JW, Hutchins, AM & Slavin, JL (1997) Urinary isoflavonoid excretion in humans is dose dependent at low to moderate levels of soy protein consumption. American Journal of Clinical Nutrition 66, 4651.CrossRefGoogle ScholarPubMed

Kelly, GE, Joannou, GE, Reeder, AY, Nelson, C & Waring, MA (1995) The variable metabolic response to dietary isoflavones in humans. Proceedings of the Society for Experimental Biology and Medicine 208, 4043.CrossRefGoogle ScholarPubMed

Kelly, GE, Nelson, C, Waring, MA, Joannou, GE & Reeder, AY (1993) Metabolites of dietary soya isoflavones in human urine. Clinica Chimica Acta 223, 922.CrossRefGoogle ScholarPubMed

King, RA (1998) Daidzein conjugates are more bioavailable than genistein conjugates in rats. American Journal of Clinical Nutrition 68, 1496S1499S.CrossRefGoogle ScholarPubMed

King, RA & Bursill, DB (1998) Plasma and urinary kinetics of the isoflavones daidzein and genistein after a single soy meal in humans. American Journal of Clinical Nutrition 67, 867872.CrossRefGoogle ScholarPubMed

Kirkman, LM, Lampe, JW, Campbell, DR, Martini, MC & Slavin, JL (1995) Urinary lignan and isoflavonoid excretion in men and women consuming vegetable and soy diets. Nutrition and Cancer 24, 112.CrossRefGoogle ScholarPubMed

Kuiper, GG, Lemmen, JG, Carlsson, B, Corton, JC, Safe, SH, van der Saag, PT, van der Burg, B & Gustafsson, JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139, 42524263.CrossRefGoogle ScholarPubMed

Kurzer, MS, Lampe, JW, Martini, MC & Adlercreutz, H (1995) Fecal lignan and isoflavonoid excretion in premenopausal women consuming flaxseed powder. Cancer Epidemiology Biomarkers & Prevention 4, 353358.Google ScholarPubMed

Lampe, JW, Karr, SC, Hutchins, AM & Slavin, JL (1998) Urinary equol excretion with a soy challenge: influence of habitualdiet. Proceedings of the Society for Experimental Biology and Medicine 217, 335339.CrossRefGoogle Scholar

Lee, K, Wang, H, Murphy, PA & Hendrich, S (1995) Soybean isoflavone extract suppresses early but not later promotion of hepatocarcinogenesis by phenobarbital in female rat liver. Nutrition and Cancer 24, 267278.CrossRefGoogle Scholar

Lu, LJW & Anderson, KE (1998) Sex and long-term soy diets affect the metabolism and excretion of soy isoflavones in humans. American Journal of Clinical Nutrition 68, 1500S1504S.CrossRefGoogle Scholar

Lu, LJW, Broemeling, LD, Marshall, MV & Ramanujam, S (1995a) A simplified method to quantify isoflavones in commercial soybean diets and human urine after legume consumption. Cancer Epidemiology, Biomarkers & Prevention 4, 497503.Google ScholarPubMed

Lu, LJW, Grady, JJ, Marshall, MV, Ramanujam, S & Anderson, KE (1995b) Altered time course of urinary daidzein and genistein excretion during chronic soya diet in healthy male subjects. Nutrition and Cancer 24, 311323.CrossRefGoogle ScholarPubMed

Lu, LJW, Lin, SN, Grady, JJ, Nagamani, M & Anderson, KE (1996) Altered kinetics and extent of urinary daidzein and genistein excretion in women during chronic soya exposure. Nutrition and Cancer 26, 289302.CrossRefGoogle ScholarPubMed

Lundh, TJO, Pettersson, H & Kiessling, KH (1988) Demethylation and conjugation of formononetin and daidzein in sheep and cow liver-microsomes. Journal of Agriculture and Food Chemistry 36, 2225.CrossRefGoogle Scholar

McMahon, LG, Nakano, H, Levy, MD & Gregory, JF (1997) Cytosolic pyridoxine-beta-D-glucoside hydrolase from porcine jejunal mucosa — purification, properties, and comparison with broad specificity beta-glucosidase. Journal of Biological Chemistry 272, 3202532033.CrossRefGoogle ScholarPubMed

Mallett, AK & Rowland, IR (1988) Factors affecting the gut microflora. In Role of the Gut Flora in Toxicity and Cancer, pp. 347382 [Rowland, IR, editor], London: Academic Press.CrossRefGoogle Scholar

Mazur, W, Fotsis, T, Wähälä, K, Ojala, S, Salakka, A & Adlercreutz, H (1996) Isotopic dilution gas chromatography-mass spectroscopy methods for the determination of isoflavonoids, coumestrol and lignans in foods. Analytical Biochemistry 233, 169180.CrossRefGoogle Scholar

Messina, MJ, Persky, V, Setchell, KDR & Barnes, S (1994) Soyintake and cancer risk: a review of the in vitro and in vivo data. Nutrition and Cancer 21, 113131.CrossRefGoogle Scholar

Morton, MS, Ferreira, A, Monteiro, L, Correia, R, Blacklock, N, Chan, PSF, Cheng, C, Lloyd, S, Wu, C-P & Griffiths, K (1997) Measurement and metabolism of isoflavonoids and lignans in the human male. Cancer Letters 114, 145151.CrossRefGoogle ScholarPubMed

Morton, MS, Wilcox, G, Wahlqvist, ML & Griffiths, K (1994) Determination of lignans and isoflavonoids in human female plasma following dietary supplementation. Journal of Endocrinology 142, 251259.CrossRefGoogle ScholarPubMed

Nesbitt, PD, Lam, Y & Thompson, LU (1999) Human metabolism of mammalian lignan precursors in raw and processed flaxseed. American Journal of Clinical Nutrition 69, 549555.CrossRefGoogle ScholarPubMed

Owen, RW, Haubner, R, Hull, WE, Thompson, LU, Spiegelhalder, B & Bartsch, H (2001) Formation of the mammalian lignans enterodiol and enterolactone from (+)-pinoresinol a major lignan present in olive oil. In Whole Grains and Human Health, International Symposium held on 13–15 June, Abstracts Book. VTT Symposium vol. 213, pp. 8588. Finland: VTT.Google Scholar

Piskula, MK, Yamakoshi, J & Iwai, Y (1999) Daidzein and genistein but not their glucosides are absorbed from the rat stomach. FEBS Letters 447, 287291.CrossRefGoogle Scholar

Rowland, I, Wiseman, H, Sanders, T, Adlercreutz, H & Bowey, E (1999) Metabolism of oestrogens and PEs: role of the gut microflora. Biochemical Society Transactions 27, 304308.CrossRefGoogle Scholar

Rowland, I, Wiseman, H, Sanders, T, Adlercreutz, H & Bowey, E (2000) Interindividual variation in metabolism of isoflavonoids and lignans: the role of the gut microflora and habitual diet. Nutrition and Cancer 36, 2732.CrossRefGoogle Scholar

Setchell, KDR (1998) Phytoestrogens: the biochemistry, physiology and implications for human health of soy isoflavones. American Journal of Clinical Nutrition 68, 133S146S.Google ScholarPubMed

Setchell, KDR & Adlercreutz, H (1988) Mammalian lignans and phytoestrogens: recent studies on their formation, metabolism and biological role in health and disease. In The Role of the Gut Microflora in Toxicity and Cancer, pp. 315345 [Rowland, IR, editor]. London: Academic Press.CrossRefGoogle Scholar

Setchell, KDR, Bordello, SP, Hulme, P, Kirk, DN & Axelson, M (1984) Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent disease. American Journal of Clinical Nutrition 40, 569578.CrossRefGoogle ScholarPubMed

Setchell, KDR, Brown, NM, Desai, P, Zimmer-Nechemias, L, Wolfe, BE, Brashear, WT, Kirschner, AS, Cassidy, A & Heubi, JE (2001) Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. Journal of Nutrition 131, 1362S1375S.CrossRefGoogle ScholarPubMed

Setchell, KDR, Brown, NM, Zimmer-Nechemias, L, Brashear, WT, Wolfe, BE, Kirschner, AS & Heubi, JE (2002) Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. American Journal of Clinical Nutrition 76, 447453.CrossRefGoogle ScholarPubMed

Setchell, KDR & Cassidy, A (1999) Dietary isoflavones: biological effects and relevance to human health. Journal of Nutrition 129, 758S767S.CrossRefGoogle ScholarPubMed

Setchell, KDR, Faughnan, MS, Avades, T, Zimmer-Nechemias, L, Wolfe, BE, Brashear, WT, Desai, P, Oldfield, MF, Botting, NP & Cassidy, A (2003) Comparing the pharmacokinetics of daidzein and genistein with the use of [13C]labeled tracers in premenopausal women. American Journal of Clinical Nutrition in press.CrossRefGoogle Scholar

Setchell, KDR, Gosselin, SJ, Welsh, MB, Johnston, JO, Balistreri, WF, Kramer, LW, Dresser, BL & Tarr, MJ (1987) Dietary estrogens — a probable cause of infertility and liver disease in captive cheetah. Gastroenterology 93, 225233.CrossRefGoogle Scholar

Setchell, KD, Lawson, AM, Borriello, SP, Harkness, R, Gordon, H, Morgan, DM, Kirk, DN, Adlercreutz, H, Anderson, LC & Axelson, M (1981) Lignan formation in man — microbial involvement and possible roles in relation to cancer. The Lancet 2, 47.CrossRefGoogle ScholarPubMed

Setchell, KDR, Nechemias, L, Cai, J & Heubi, JE (1997) Exposure of infants to phyto-oestrogens from soy-based infant formula. Lancet 350, 2327.CrossRefGoogle ScholarPubMed

Sfakionos, J, Coward, L, Kirk, M & Barnes, S (1997) Intestinal uptake and biliary excretion of the isoflavone genistein in rats. Journal of Nutrition 127, 12601268.CrossRefGoogle Scholar

Shelnutt, SR, Cimino, CO, Wiggins, PA & Badger, TM (2000) Urinary pharmacokinetics of the glucuronide and sulfate conjugates of genistein and daidzein. Cancer Epidemiology, Biomarkers & Prevention 9, 413419.Google Scholar

Steensma, A, Noteborn, HPJM, van der Jagt, RCM, Ploman, THG, Mengelers, MJB & Kuiper, HA (1999) Bioavailability of genistein, daidzein, and their glycosides in intestinal epithelial Caco-2 cells. Environmental Toxicology and Pharmacology 7, 209212.CrossRefGoogle ScholarPubMed

Tew, B-Y, Xu, X, Wang, H-J, Murphy, PA & Hendrich, S (1996) A diet high in wheat fiber decreases the bioavailability of soybean isoflavones in a single meal fed to women. Journal of Nutrition 126, 871877.CrossRefGoogle Scholar

Verdeal, K & Ryan, DS (1979) Naturally-occuring estrogens in plant foodstuffs — a review. Journal of Food Protection 42, 577583.CrossRefGoogle Scholar

Wähälä, K, Salakka, A & Adlercreutz, H (1998) Synthesis of novel mammalian metabolites of the isoflavonoid phytoestrogens daidzein and genistein. Proceedings of the Society for Experimental Biology and Medicine 217, 293299.CrossRefGoogle Scholar

Wang, L, Meselhy, R, Li, Y, Qin, G & Hattori, M (2000) Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans enterodiol and enterolactone. Chemical and Pharmacology Bulletin 48, 16061610.CrossRefGoogle ScholarPubMed

Watanabe, S, Yamaguchi, M, Sobue, T, Takahashi, T, Miura, T, Arai, Y, Mazur, W, Wähälä, K & Adlercreutz, H (1998) Pharmacokinetics of soybean isoflavones in plasma, urine and feces of men after ingestion of 60 g baked soybean powder (kinako). Journal of Nutrition 128, 17101715.CrossRefGoogle ScholarPubMed

Weber, KS, Jacobson, NA, Setchell, KD & Lephart, ED (1999) Brain aromatase and 5 alpha reductase, regulatory behaviours and testosterone levels in adult rats on phytoestrogen diets. Proceedings of the Society for Experimental Biology and Medicine 221, 131135.CrossRefGoogle ScholarPubMed

Wiseman, H (1999) The bioavailability of non-nutrient plant factors: dietary flavonoids and phyto-oestrogens. Proceedings of the Nutrition Society 58, 139146.CrossRefGoogle ScholarPubMed

Xu, X, Harris, KS, Wang, H, Murphy, PA & Hendrich, S (1995) Bioavailability of soybean isoflavones depends upon gut microflora in women. Journal of Nutrition 125, 23072315.CrossRefGoogle ScholarPubMed

Xu, X, Wang, H, Murphy, PA, Cook, L & Hendrich, S (1994) Daidzein is a more bioavailable soymilk isoflavone than genistein in adult women. Journal of Nutrition 124, 825832.CrossRefGoogle ScholarPubMed

Zhang, Y, Wang, GJ, Song, TT, Murphy, PA & Hendrich, S (1999) Urinary disposition of the soybean isoflavones daidzein, genistein and glycitein differs among humans with moderate fecal isoflavone degradation activity. Journal of Nutrition 129, 957962.CrossRefGoogle ScholarPubMed