American Mathematical Society
- ️@authorUsername
Remote Access
- Current volume
- Articles in press
- Recently published
- All issues : 1943 – Present
A tabulation of oriented links
HTML articles powered by AMS MathViewer
- by Helmut Doll and Jim Hoste PDF
- Math. Comp. 57 (1991), 747-761 Request permission
Abstract:
In this paper we enumerate all prime, nonsplit, oriented, classical links having two or more components and nine or fewer crossings. Our list is complete up to diffeomorphism of ${S^3}$ and complete reorientation of the link. (That is, reorienting every component of the link.) Previously, only tables of nonoriented links have been compiled. Furthermore, we list, in the case of alternating links, all possible minimal diagrams of each link up to orientation. We also include the skein polynomials of each link. Our methods are direct generalizations of those used by Dowker and Thistlethwaite to enumerate knots. We rely heavily on the HOMFLY and Kauffman polynomials to distinguish inequivalent links. In a few cases these invariants will not suffice and other link invariants are employed. Our table is generated "from scratch" rather than by introducing orientations into already existing nonoriented tables. This provides a check on Conway’s table in the range mentioned above.References
- J. W. Alexander and G. B. Briggs, On types of knotted curves, Ann. of Math. (2) 28 (1926/27), no. 1-4, 562–586. MR 1502807, DOI 10.2307/1968399 F. Bonahon and L. Siebenmann, Geometric splittings of classical knots and the algebraic knots of Conway, preprint.
- Alain Caudron, Classification des nœuds et des enlacements, Publications Mathématiques d’Orsay 82 [Mathematical Publications of Orsay 82], vol. 4, Université de Paris-Sud, Département de Mathématiques, Orsay, 1982 (French). MR 679310
- J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 329–358. MR 0258014
- C. H. Dowker and Morwen B. Thistlethwaite, Classification of knot projections, Topology Appl. 16 (1983), no. 1, 19–31. MR 702617, DOI 10.1016/0166-8641(83)90004-4
- Louis H. Kauffman, New invariants in the theory of knots, Amer. Math. Monthly 95 (1988), no. 3, 195–242. MR 935433, DOI 10.2307/2323625
- Louis H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395–407. MR 899057, DOI 10.1016/0040-9383(87)90009-7 T. P. Kirkman, The 364 unifilar knots of ten crossings enumerated and defined, Trans. Roy. Soc. Edinburgh 32 (1885), 483-506. —, The enumeration, description and construction of knots of fewer than ten crossings, Trans. Roy. Soc. Edinburgh 32 (1885), 281-309.
- W. B. R. Lickorish and K. C. Millett, The new polynomial invariants of knots and links, Math. Mag. 61 (1988), no. 1, 3–23. MR 934822, DOI 10.2307/2690324 C. N. Little, On knots with a census for order ten, Trans. Connecticut Acad. 7 (1885), 27-43. —, Alternate $\pm$ knots of order 11, Trans. Roy. Soc. Edinburgh 36 (1890), 253-255. —, Nonalternate $\pm$ knots, Trans. Roy. Soc. Edinburgh 39 (1900), 771-778.
- Kunio Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26 (1987), no. 2, 187–194. MR 895570, DOI 10.1016/0040-9383(87)90058-9
- Kenneth A. Perko Jr., On the classification of knots, Proc. Amer. Math. Soc. 45 (1974), 262–266. MR 353294, DOI 10.1090/S0002-9939-1974-0353294-X
- Kenneth A. Perko Jr., On $10$-crossing knots, Portugal. Math. 38 (1979), no. 1-2, 5–9 (1982). MR 682350 K. Reidemeister, Knotentheorie, Ergeb. Math. Grenzgeb., Bd. 1, Springer-Verlag, Berlin, 1932.
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288 P. G. Tait, On knots. I, II, III, Scientific Papers, Vol. I, Cambridge Univ. Press, London, 1898, pp. 273-347.
- Morwen B. Thistlethwaite, Knot tabulations and related topics, Aspects of topology, London Math. Soc. Lecture Note Ser., vol. 93, Cambridge Univ. Press, Cambridge, 1985, pp. 1–76. MR 787823
- Morwen B. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology 26 (1987), no. 3, 297–309. MR 899051, DOI 10.1016/0040-9383(87)90003-6
Additional Information
- © Copyright 1991 American Mathematical Society
- Journal: Math. Comp. 57 (1991), 747-761
- MSC: Primary 57M25
- DOI: https://doi.org/10.1090/S0025-5718-1991-1094946-4
- MathSciNet review: 1094946