biorxiv.org

Clades of huge phage from across Earth’s ecosystems

  • ️Mon Mar 11 2019

New Results

, View ORCID ProfileRohan Sachdeva, View ORCID ProfileLin-Xing Chen, Fred Ward, Patrick Munk, Audra Devoto, Cindy J. Castelle, Matthew R. Olm, Keith Bouma-Gregson, Yuki Amano, Christine He, View ORCID ProfileRaphaël Méheust, Brandon Brooks, Alex Thomas, Adi Lavy, Paula Matheus-Carnevali, Christine Sun, Daniela S. A. Goltsman, Mikayla A. Borton, Tara C. Nelson, Rose Kantor, Alexander L. Jaffe, Ray Keren, Ibrahim F. Farag, Shufei Lei, Kari Finstad, Ronald Amundson, Karthik Anantharaman, Jinglie Zhou, Alexander J. Probst, Mary E. Power, Susannah G. Tringe, Wen-Jun Li, Kelly Wrighton, Sue Harrison, Michael Morowitz, David A. Relman, Jennifer A Doudna, Anne-Catherine Lehours, Lesley Warren, Jamie H. D. Cate, Joanne M. Santini, View ORCID ProfileJillian F. Banfield

doi: https://doi.org/10.1101/572362

Abstract

Phage typically have small genomes and depend on their bacterial hosts for replication. DNA sequenced from many diverse ecosystems revealed hundreds of huge phage genomes, between 200 kbp and 716 kbp in length. Thirty-four genomes were manually curated to completion, including the largest phage genomes yet reported. Expanded genetic repertoires include diverse and new CRISPR-Cas systems, tRNAs, tRNA synthetases, tRNA modification enzymes, translation initiation and elongation factors, and ribosomal proteins. Phage CRISPR-Cas systems have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phage may repurpose bacterial CRISPR-Cas systems to eliminate competing phage. We phylogenetically define major clades of huge phage from human and other animal microbiomes, oceans, lakes, sediments, soils and the built environment. We conclude that their large gene inventories reflect a conserved biological strategy, observed over a broad bacterial host range and across Earth’s ecosystems.

Copyright 

The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.