link.springer.com

Mammalian In Vitro Splicing Assays

References

  1. Krainer, A. R., Maniatis, T., Ruskin, B., and Green, M. R. (1984) Normal and mutant human β-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell 36, 993–1005.

    Article  PubMed  CAS  Google Scholar 

  2. Mayeda, A. and Ohshima, Y. (1990) β-globin transcripts carrying a single intron with three adjacent nucleotides of 5′ exon are efficiently spliced in vitro irrespective of intron position or surrounding exon sequences. Nucleic Acids Res. 18, 4671–4676.

    Article  PubMed  CAS  Google Scholar 

  3. Mayeda, A., Hayase, Y., Inoue, H., Ohtsuka, E., and Ohshima, Y. (1990) Surveying cis-acting sequences of pre-mRNA by adding antisense 2′-O-methyl oligoribonucleotides to a splicing reaction. J. Biochem. 108, 399–405.

    PubMed  CAS  Google Scholar 

  4. Konarska, M. M., Padgett, R. A., and Sharp, P. A. (1984) Recognition of cap structure in splicing in vitro of mRNA precursors. Cell 38, 731–736.

    Article  PubMed  CAS  Google Scholar 

  5. Contreras, R., Cheroutre, H., Degrave, W., and Fiers, W. (1982) Simple, efficient in vitro synthesis of capped RNA useful for direct expression of cloned eukaryotic genes. Nucleic Acids Res. 10, 6353–6362.

    Article  PubMed  CAS  Google Scholar 

  6. Krainer, A. R. and Maniatis, T. (1985) Multiple factors including the small nuclear ribonucleoproteins U1 and U2 are necessary for pre-mRNA splicing in vitro. Cell 42, 725–736.

    Article  PubMed  CAS  Google Scholar 

  7. Mayeda, A. and Ohshima, Y. (1988) Short donor site sequences inserted within the intron of β-globin pre-mRNA serve for splicing in vitro. Mol. Cell. Biol. 8, 4484–4491.

    PubMed  CAS  Google Scholar 

  8. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning, 2nd ed. Cold Spring Harbor Press, Cold Spring Harbor, New York.

    Google Scholar 

  9. Ruskin, B., Krainer, A. R., Maniatis, T., and Green, M. R. (1984) Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell 38, 317–331.

    Article  PubMed  CAS  Google Scholar 

  10. Grabowski, P. J., Padgett, R. A., and Sharp, P. A. (1984) Messenger RNA splicing in vitro: an excised intervening sequence and a potential intermediate. Cell 37, 415–427.

    Article  PubMed  CAS  Google Scholar 

  11. Krainer, A. R., Conway, G C, and Kozak, D. (1990) The essential pre-mRNA splicing factor SF2 influences 5′ splice site selection by activating proximal sites. Cell 62, 35–42.

    Article  PubMed  CAS  Google Scholar 

  12. Screaton, G R., Cáceres, J. F., Mayeda, A., Bell, M. V., Plebanski, M., Jackson, D. G Bell, J. I., and Krainer, A. R. (1995) Identification and characterization of three members of the human SR family of pre-mRNA splicing factors. EMBO J. 14, 4336–4349.

    PubMed  CAS  Google Scholar 

  13. Helfman, D. M., Ricci, W. M., and Finn, L. A. (1988) Alternative splicing of tropomyosin pre-mRNAs in vitro and in vivo. Genes Dev. 2, 1627–1638.

    Article  PubMed  CAS  Google Scholar 

  14. Mayeda, A., Helfman, D. M., and Krainer, A. R. (1993) Modulation of exon skipping and inclusion by heterogeneous nuclear ribonucleoprotein A1 and pre-mRNA splicing factor SF2/ASF. Mol. Cell. Biol. 13, 2993–3001.

    PubMed  CAS  Google Scholar 

  15. Schmitt, P., Gattoni, R., Keohavong, P., and Stévenin, J. (1987) Alternative splicing of E1A transcripts of adenovirus requires appropriate ionic conditions in vitro. Cell 50, 31–39.

    Article  PubMed  CAS  Google Scholar 

  16. Ohno, M., Sakamoto, H., and Shimura, Y. (1987) Preferential excision of the 5′ proximal intron from RNA precursors with two introns as mediated by the cap structure. Proc. Natl. Acad. Sci. USA 84, 5187–5191.

    Article  PubMed  CAS  Google Scholar 

  17. Noble, J. C. S., Pan, Z.-Q., Prives, C, and Manley, J. L. (1987) Splicing of SV40 early pre-mRNA to large T and small t mRNAs utilizes different patterns of lariat branch sites. Cell 50, 227–236.

    Article  PubMed  CAS  Google Scholar 

Download references