researchsquare.com

Shrub encroachment modifies soil properties through plant resource economic traits

  • ️@researchsquare
  • ️Fri Jun 04 0455

  1. Aguirre D, Benhumea AE, McLaren JR (2021) Shrub encroachment affects tundra ecosystem properties through their living canopy rather than increased litter inputs. Soil Biol Biochem 153:108121. https://doi.org/10.1016/J.SOILBIO.2020.108121
  2. Aguirre D, Benhumea AE, McLaren JR (2024) Shrub effects on the decomposition microenvironment and changes in litter quality have opposing effects on litter decomposition. Soil Biol Biochem 195:109472. https://doi.org/10.1016/J.SOILBIO.2024.109472
  3. Ambrosino ML, Torres YA, Lucero CT, et al (2023) Impacts of shrubs on soil quality in the native Monte rangelands of Southwestern Buenos Aires, Argentina. Land Degrad Dev 34:3406-3417. https://doi.org/10.1002/ldr.4692
  4. Ameztegui A, Coll L, Brotons L, Ninot JM (2016) Land-use legacies rather than climate change are driving the recent upward shift of the mountain tree line in the Pyrenees. Global Ecology and Biogeography 25:263-273. https://doi.org/10.1111/geb.12407
  5. Anthelme F, Villaret J-C, Brun J-J (2007) Shrub encroachment in the Alps gives rise to the convergence of sub-alpine communities on a regional scale. Journal of Vegetation Science 18:355-362. https://doi.org/10.1658/1100-9233(2007)18[355:seitag]2.0.co;2
  6. Bani A, Pioli S, Ventura M, et al (2018) The role of microbial community in the decomposition of leaf litter and deadwood. Applied Soil Ecology 126:75-84. https://doi.org/10.1016/j.apsoil.2018.02.017
  7. Bardgett RD, Bullock JM, Lavorel S, et al (2021) Combatting global grassland degradation. Nat Rev Earth Environ 2:720-735. https://doi.org/10.1038/s43017-021-00207-2
  8. Barros C, Guéguen M, Douzet R, et al (2017) Extreme climate events counteract the effects of climate and land-use changes in Alpine tree lines. Journal of Applied Ecology 54:39–50. https://doi.org/10.1111/1365-2664.12742
  9. Bennett JA, Maherali H, Reinhart KO, et al (2017) Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics 355:181-184. https://doi.org/10.1126/science.aai8212
  10. Blaser WJ, Shanungu GK, Edwards PJ, Olde Venterink H (2014) Woody encroachment reduces nutrient limitation and promotes soil carbon sequestration. Ecol Evol 4:1423-1438. https://doi.org/10.1002/ece3.1024
  11. Broadbent AAD, Bahn M, Pritchard WJ, et al (2022) Shrub expansion modulates belowground impacts of changing snow conditions in alpine grasslands. Ecol Lett 25:52–64. https://doi.org/10.1111/ele.13903
  12. Broadbent AAD, Snell HSK, Michas A, et al (2021) Climate change alters temporal dynamics of alpine soil microbial functioning and biogeochemical cycling via earlier snowmelt. ISME Journal 15:2264–2275. https://doi.org/10.1038/s41396-021-00922-0
  13. Bumb I, Garnier E, Coq S, et al (2018) Traits determining the digestibility- decomposability relationships in species from Mediterranean rangelands. Ann Bot 121:459-469. https://doi.org/10.1093/aob/mcx175
  14. Cannone N, Malfasi F (2024) Climate change triggered synchronous woody plants recruitment in the last two centuries in the treeline ecotone of the Northern Hemisphere. Science of the Total Environment 921:170953. https://doi.org/10.1016/j.scitotenv.2024.170953
  15. Cannone N, Sgorbati S, Guglielmin M (2007) Unexpected impacts of climate change on alpine vegetation. Front Ecol Environ 5:360–364. https://doi.org/10.1890/1540-9295(2007)5[360:UIOCCO]2.0.CO;2
  16. Cheng X, Xing W, Liu J (2023) Litter chemical traits, microbial and soil stoichiometry regulate organic carbon accrual of particulate and mineral-associated organic matter. Biol Fertil Soils 59:777-790. https://doi.org/10.1007/s00374-023-01746-0
  17. Collins CG, Spasojevic MJ, Alados CL, et al (2020) Belowground impacts of alpine woody encroachment are determined by plant traits, local climate, and soil conditions. Glob Chang Biol 26:7112-7127. https://doi.org/10.1111/gcb.15340
  18. Cornelissen JHC, Lavorel S, Garnier E, et al (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380. https://doi.org/10.1071/BT02124
  19. Cornwell WK, Cornelissen JHC, Amatangelo K, et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065-1071. https://doi.org/10.1111/j.1461-0248.2008.01219.x
  20. Crofts AL, Drury DO, McLaren JR (2018) Changes in the understory plant community and ecosystem properties along a shrub density gradient. Arct Sci 4:485-498. https://doi.org/10.1139/as-2017-0026
  21. de Bello F, Lavorel S, Díaz S, et al (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv 19:2873–2893. https://doi.org/10.1007/s10531-010-9850-9
  22. De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516-531. https://doi.org/10.1111/j.1461-0248.2008.01164.x
  23. de la Riva EG, Tosto A, Pérez-Ramos IM, et al (2016) A plant economics spectrum in Mediterranean forests along environmental gradients: Is there coordination among leaf, stem and root traits? Journal of Vegetation Science 27:187-199. https://doi.org/10.1111/jvs.12341
  24. Díaz S, Kattge J, Cornelissen JHC, et al (2016) The global spectrum of plant form and function. Nature 529:167–171. https://doi.org/10.1038/nature16489
  25. Ding L, Wang P, Zhang W, et al (2019) Shrub encroachment shapes soil nutrient concentration, stoichiometry and carbon storage in an abandoned subalpine grassland. Sustainability (Switzerland) 11:1732. https://doi.org/10.3390/su11061732
  26. D’Odorico P, Okin GS, Bestelmeyer BT (2012) A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5:520–530. https://doi.org/10.1002/eco.259
  27. Eldridge DJ, Bowker MA, Maestre FT, et al (2011) Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecol Lett 14:709–722. https://doi.org/10.1111/j.1461-0248.2011.01630.x
  28. Eldridge DJ, Delgado-Baquerizo M, Travers SK, et al (2017) Do grazing intensity and herbivore type affect soil health? Insights from a semi-arid productivity gradient. Journal of Applied Ecology 54:976–985. https://doi.org/10.1111/1365-2664.12834
  29. Elmendorf SC, Henry GHR, Hollister RD, et al (2012) Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat Clim Chang 2:453-457. https://doi.org/10.1038/nclimate1465
  30. Fanin N, Clemmensen KE, Lindahl BD, et al (2022) Ericoid shrubs shape fungal communities and suppress organic matter decomposition in boreal forests. New Phytologist 236:684-697. https://doi.org/10.1111/nph.18353
  31. Ferrol N, Azcón-Aguilar C, Pérez-Tienda J (2019) Review: Arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: An overview on the mechanisms involved. Plant Science 280:441-447. https://doi.org/10.1016/j.plantsci.2018.11.011
  32. Freschet GT, Aerts R, Cornelissen JHC (2012) A plant economics spectrum of litter decomposability. Funct Ecol 26:56-65. https://doi.org/10.1111/j.1365-2435.2011.01913.x
  33. Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010) Evidence of the “plant economics spectrum” in a subarctic flora. Journal of Ecology 98:362-373. https://doi.org/10.1111/j.1365-2745.2009.01615.x
  34. García Criado M, Myers-Smith IH, Bjorkman AD, et al (2020) Woody plant encroachment intensifies under climate change across tundra and savanna biomes. Global Ecology and Biogeography 29:925-943. https://doi.org/10.1111/geb.13072
  35. Garnier E, Cortez J, Billès G, et al (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630-2637. https://doi.org/10.1890/03-0799
  36. Gartzia M, Alados CL, Pérez-Cabello F (2014) Assessment of the effects of biophysical and anthropogenic factors on woody plant encroachment in dense and sparse mountain grasslands based on remote sensing data. Prog Phys Geogr 38:201–217. https://doi.org/10.1177/0309133314524429
  37. Grau O, Saravesi K, Ninot JM, et al (2019) Encroachment of shrubs into subalpine grasslands in the Pyrenees modifies the structure of soil fungal communities and soil properties. FEMS Microbiol Ecol 95. https://doi.org/10.1093/femsec/fiz028
  38. Grigulis K, Lavorel S, Krainer U, et al (2013) Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. Journal of Ecology 101:47-57. https://doi.org/10.1111/1365-2745.12014
  39. Grime JP (1998) Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. Journal of Ecology 86:902-910. https://doi.org/10.1046/j.1365-2745.1998.00306.x
  40. Guo C, Yan ER, Cornelissen JHC (2022a) Size matters for linking traits to ecosystem multifunctionality. Trends Ecol Evol 37:803-813. https://doi.org/10.1016/j.tree.2022.06.003
  41. Guo Q, Wen Z, Ghanizadeh H, et al (2022b) Shift in microbial communities mediated by vegetation-soil characteristics following subshrub encroachment in a semi-arid grassland. Ecol Indic 137:108768. https://doi.org/10.1016/j.ecolind.2022.108768
  42. Hattenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243. https://doi.org/10.1016/S0169-5347(00)01861-9
  43. Hovenden MJ, Newton PCD, Osanai Y (2017) Warming has a larger and more persistent effect than elevated CO2 on growing season soil nitrogen availability in a species-rich grassland. Plant Soil 421:417–428. https://doi.org/10.1007/s11104-017-3474-8
  44. Huys R, Poirier V, Bourget MY, et al (2022) Plant litter chemistry controls coarse-textured soil carbon dynamics. Journal of Ecology 110:2911-2928. https://doi.org/10.1111/1365-2745.13997
  45. Illa E, Ninot JM, Anadon-Rosell A, Oliva F (2017) The role of abiotic and biotic factors in functional structure and processes of alpine subshrub communities. Folia Geobot 52:199–215. https://doi.org/10.1007/s12224-017-9296-x
  46. Kahl T, Arnstadt T, Baber K, et al (2017) Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. For Ecol Manage 391:86-95. https://doi.org/10.1016/j.foreco.2017.02.012
  47. Kambach S, Attorre F, Axmanová I, et al (2024) Climate regulation processes are linked to the functional composition of plant communities in European forests, shrublands, and grasslands. Glob Chang Biol 30:e17189. https://doi.org/10.1111/gcb.17189
  48. Kassambara A, Mundt F (2020) Factoextra: Extract and Visualize the Results of Multivariate Data Analyses (R Package Version 1.0.7.)
  49. Kemppinen J, Niittynen P, Virkkala AM, et al (2021) Dwarf Shrubs Impact Tundra Soils: Drier, Colder, and Less Organic Carbon. Ecosystems 24:1378-1392. https://doi.org/10.1007/s10021-020-00589-2
  50. Kobayashi T, Oguro M, Taki H, Kurokawa H (2024) Decomposability of leaf and wood litter are not correlated across species: effects of litter traits on decomposition in field and laboratory conditions. Oikos 2024:e10045. https://doi.org/10.1111/oik.10045
  51. Kraus TEC, Dahlgren RA, Zasoski RJ (2003) Tannins in nutrient dynamics of forest ecosystems - A review. Plant Soil 256:41-66. https://doi.org/10.1023/A:1026206511084
  52. Laliberté E, Tylianakis, JM (2012) Cascading effects of long‐term land‐use changes on plant traits and ecosystem functioning. Ecology 93:145-155. https://doi.org/10.1890/11-0338.1
  53. Lamarque P, Lavorel S, Mouchet M, Quétier F (2014) Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services. Proc Natl Acad Sci U S A 111:13751-13756. https://doi.org/10.1073/pnas.1216051111
  54. Lavorel S (2013) Plant functional effects on ecosystem services. Journal of Ecology 101:4-8. https://doi.org/10.1111/1365-2745.12031
  55. Lavorel S (2018) Climate change effects on grassland ecosystem services. In: Gibson DJ, Newman J (eds) Grasslands and Climate Change. Cambridge University Press, pp 131–146
  56. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct Ecol 16:545–556. https://doi.org/10.1046/j.1365-2435.2002.00664.x
  57. Lavorel S, Grigulis K (2012) How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services. Journal of Ecology 100:128–140. https://doi.org/10.1111/j.1365-2745.2011.01914.x
  58. Lavorel S, Grigulis K, Lamarque P, et al (2011) Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology 99:135–147. https://doi.org/10.1111/j.1365-2745.2010.01753.x
  59. Lavorel S, Grigulis K, Leitinger G, et al (2017) Historical trajectories in land use pattern and grassland ecosystem services in two European alpine landscapes. Reg Environ Change 17:2251–2264. https://doi.org/10.1007/s10113-017-1207-4
  60. Lavorel S, Grigulis K, McIntyre S, et al (2008) Assessing functional diversity in the field - Methodology matters! Funct Ecol 22:134–147. https://doi.org/10.1111/j.1365-2435.2007.01339.x
  61. Lefcheck JS (2016) piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579. https://doi.org/10.1111/2041-210X.12512
  62. Le S, Josse J, Husson F (2008) FactoMineR: A Package for Multivariate Analysis. Journal of Statistical Software. 25:1–18
  63. Levy E, Madden EA (1933) The point method of pasture analysis. New Zealand J Agr 46:267–279
  64. Liao C, Huang W, Wells J, et al (2022) Microbe-iron interactions control lignin decomposition in soil. Soil Biol Biochem 173:108803. https://doi.org/10.1016/j.soilbio.2022.108803
  65. Lienin P, Kleyer M (2012) Plant trait responses to the environment and effects on ecosystem properties. Basic Appl Ecol 13:301–311. https://doi.org/10.1016/j.baae.2012.05.002
  66. Li H, Shen H, Chen L, et al (2016) Effects of shrub encroachment on soil organic carbon in global grasslands. Sci Rep 6:28974. https://doi.org/10.1038/srep28974
  67. Li H, Zhang J, Hu H, et al (2017) Shift in soil microbial communities with shrub encroachment in Inner Mongolia grasslands, China. Eur J Soil Biol 79:40-47. https://doi.org/10.1016/j.ejsobi.2017.02.004
  68. Liu YF, Fang H, Huang Z, et al (2023) Shrub encroachment increases soil erosion risk in hillside alpine meadows of the Qinghai-Tibetan Plateau, NW China. Catena (Amst) 222:106842. https://doi.org/10.1016/j.catena.2022.106842
  69. Liu YF, Zhang Z, Liu Y, et al (2022) Shrub encroachment enhances the infiltration capacity of alpine meadows by changing the community composition and soil conditions. Catena (Amst) 213:106222. https://doi.org/10.1016/j.catena.2022.106222
  70. Lourenço A, Pereira H (2018) Compositional Variability of Lignin in Biomass. In: Lignin - Trends and Applications, pp 65–98
  71. Moretti M, de Bello F, Ibanez S, Fontana S, Pezzatti G B, Dziock F., ... & Lavorel S (2013). Linking traits between plants and invertebrate herbivores to track functional effects of land‐use changes. Journal of Vegetation Science 24:949-962. https://doi.org/10.1111/jvs.12022
  72. Myers-Smith IH, Forbes BC, Wilmking M, et al (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environmental Research Letters 6:045509. https://doi.org/10.1088/1748-9326/6/4/045509
  73. Myers-Smith IH, Grabowski MM, Thomas HJD, et al (2019) Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change. Ecol Monogr 89:e01351. https://doi.org/10.1002/ecm.1351
  74. Myers-Smith IH, Hik DS (2018) Climate warming as a driver of tundra shrubline advance. Journal of Ecology 106:547-560. https://doi.org/10.1111/1365-2745.12817
  75. Naito AT, Cairns DM (2011) Patterns and processes of global shrub expansion. Prog Phys Geogr 35:423-442. https://doi.org/10.1177/0309133311403538
  76. Navas ML, Roumet C, Bellmann A, et al (2010) Suites of plant traits in species from different stages of a Mediterranean secondary succession. Plant Biol 12:183-196. https://doi.org/10.1111/j.1438-8677.2009.00208.x
  77. Northup RR, Dahlgren RA, McColl JG (1998) Polyphenols as regulators of plant-litter-soil interactions in northern California’s pygmy forest: A positive feedback? Biogeochemistry 42:189–220. https://doi.org/10.1023/A:1005991908504
  78. Nunes A, Köbel M, Pinho P, et al (2019) Local topographic and edaphic factors largely predict shrub encroachment in Mediterranean drylands. Science of the Total Environment 657:310-318. https://doi.org/10.1016/j.scitotenv.2018.11.475
  79. Pérez-Ramos IM, Roumet C, Cruz P, et al (2012) Evidence for a “plant community economics spectrum” driven by nutrient and water limitations in a Mediterranean rangeland of southern France. Journal of Ecology 100:1315-1327. https://doi.org/10.1111/1365-2745.12000
  80. Pietsch KA, Ogle K, Cornelissen JHC, et al (2014) Global relationship of wood and leaf litter decomposability: The role of functional traits within and across plant organs. Global Ecology and Biogeography 23:1046-1057. https://doi.org/10.1111/geb.12172
  81. Pinheiro J, Bater D (2023) nlme: Linear and Nonlinear Mixed Effects Models (R package version 3.1-164).
  82. Pornaro C, Schneider MK, Leinauer B, Macolino S (2017) Above- and belowground patterns in a subalpine grassland-shrub mosaic. Plant Biosyst 151:493-503. https://doi.org/10.1080/11263504.2016.1187679
  83. Quétier F, Thébault A, Lavorel S (2007) Plant traits in a state and transition framework as markers of ecosystem response to land-use change. Ecol Monogr 77:33-52. https://doi.org/10.1890/06-0054
  84. Rahman MM, Tsukamoto J, Rahman MM, et al (2013) Lignin and its effects on litter decomposition in forest ecosystems. Chemistry and Ecology 29:540–553. https://doi.org/10.1080/02757540.2013.790380
  85. Reich PB (2014) The world-wide “fast-slow” plant economics spectrum: A traits manifesto. Journal of Ecology 102:275–301. https://doi.org/10.1111/1365-2745.12211
  86. Rosenfield M V., Keller JK, Clausen C, et al (2020) Leaf traits can be used to predict rates of litter decomposition. Oikos 129:1589-1596. https://doi.org/10.1111/oik.06470
  87. RStudio Team (2022) RStudio: Integrated development for R
  88. Sanghaw R, Vityakon P, Rasche F (2023) How feedback loops between meso- and macrofauna and organic residues contrasting in chemical quality determine decomposition dynamics in soils. Heliyon 9. https://doi.org/10.1016/j.heliyon.2023.e15534
  89. Schirpke U, Kohler M, Leitinger G, et al (2017) Future impacts of changing land-use and climate on ecosystem services of mountain grassland and their resilience. Ecosyst Serv 26:79–94. https://doi.org/10.1016/j.ecoser.2017.06.008
  90. Schirpke U, Tappeiner U, Tasser E (2019) A transnational perspective of global and regional ecosystem service flows from and to mountain regions. Sci Rep 9:. https://doi.org/10.1038/s41598-019-43229-z
  91. Seeber J, Tasser E, Rubatscher D, et al (2022) Effects of land use and climate on carbon and nitrogen pool partitioning in European mountain grasslands. Science of the Total Environment 822:6678. https://doi.org/10.1016/j.scitotenv.2022.153380
  92. Shipley B (2018) Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations and Causal Inference with R. Cambridge university press. https://doi.org/10.1207/S15328007SEM0702_4
  93. Shipley B (2000) A new inferential test for path models based on directed acyclic graphs. Structural Equation Modeling 7. https://doi.org/10.1207/S15328007SEM0702_4
  94. Soest P V. (1963) Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin . Journal of the Association of official Agricultural Chemists 46:829–835
  95. Sokol NW, Whalen ED, Jilling A, et al (2022) Global distribution, formation and fate of mineral-associated soil organic matter under a changing climate: A trait-based perspective. Funct Ecol 36:1411-1429. https://doi.org/10.1111/1365-2435.14040
  96. Spitzer CM, Sundqvist MK, Wardle DA, et al (2023) Root trait variation along a sub-arctic tundra elevational gradient. Oikos 2023:e08903. https://doi.org/10.1111/oik.08903
  97. Stevens N, Lehmann CER, Murphy BP, Durigan G (2017) Savanna woody encroachment is widespread across three continents. Glob Chang Biol 23:235-244. https://doi.org/10.1111/gcb.13409
  98. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Studies in Ecology 5
  99. Tasser E, Tappeiner U, Cernusca A (2005) Ecological effects of land-use changes in the European Alps. In: Huber UM, Bugmann HKM, Reasoner MA (eds) Global change and mountain regions: an overview of current knowledge, 1st edn. Springer Dordrecht, pp 409–420
  100. Tsujii Y, Fan B, Atwell BJ, et al (2023) A survey of leaf phosphorus fractions and leaf economic traits among 12 co-occurring woody species on phosphorus-impoverished soils. Plant Soil 489: 107-124. https://doi.org/10.1007/s11104-023-06001-x
  101. Urbina I, Grau O, Sardans J, et al (2020) Encroachment of shrubs into subalpine grasslands in the Pyrenees changes the plant-soil stoichiometry spectrum. Plant Soil 448:37–53. https://doi.org/10.1007/s11104-019-04420-3
  102. Urcelay C, Díaz S, Gurvich DE, et al (2009) Mycorrhizal community resilience in response to experimental plant functional type removals in a woody ecosystem. Journal of Ecology 97:1291-1301. https://doi.org/10.1111/j.1365-2745.2009.01582.x
  103. Van Auken OW (2009) Causes and consequences of woody plant encroachment into western North American grasslands. J Environ Manage 90:2931-2942. https://doi.org/10.1016/j.jenvman.2009.04.023
  104. Venter ZS, Cramer MD, Hawkins HJ (2018) Drivers of woody plant encroachment over Africa. Nat Commun 9:2272. https://doi.org/10.1038/s41467-018-04616-8
  105. Vogel B, Rostagno CM, Molina L, et al (2022) Cushion shrubs encroach subhumid rangelands and form fertility islands along a grazing gradient in Patagonia. Plant Soil 475:. https://doi.org/10.1007/s11104-022-05398-1
  106. Wang C, Kuzyakov Y (2024) Soil organic matter priming: The pH effects. Glob Chang Biol 30:e17349. https://doi.org/10.1111/gcb.17349
  107. Wang L, Zhang L, George TS, Feng G (2023) A core microbiome in the hyphosphere of arbuscular mycorrhizal fungi has functional significance in organic phosphorus mineralization. New Phytologist 238:859-873. https://doi.org/10.1111/nph.18642
  108. Ward D, Trinogga J, Wiegand K, et al (2018) Large shrubs increase soil nutrients in a semi-arid savanna. Geoderma 310:153–162. https://doi.org/10.1016/j.geoderma.2017.09.023
  109. Ward EB, Duguid MC, Kuebbing SE, et al (2021) Ericoid mycorrhizal shrubs alter the relationship between tree mycorrhizal dominance and soil carbon and nitrogen. Journal of Ecology 109:3524–3540. https://doi.org/10.1111/1365-2745.13734
  110. Wardle DA, Bardgett RD, Klironomos JN, et al (2004) Ecological linkages between aboveground and belowground biota. Science (1979) 304:1629-1633. https://doi.org/10.1126/science.1094875
  111. Whitford WG (1992) Biogeochemical Consequences of Desertification. https://doi.org/10.1021/bk-1992-0483.ch018
  112. Wookey PA, Aerts R, Bardgett RD, et al (2009) Ecosystem feedbacks and cascade processes: Understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob Chang Biol 15:1153–1172. https://doi.org/10.1111/j.1365-2486.2008.01801.x
  113. Wurzburger N, Hendrick RL (2009) Plant litter chemistry and mycorrhizal roots promote a nitrogen feedback in a temperate forest. Journal of Ecology 97:528-536. https://doi.org/10.1111/j.1365-2745.2009.01487.x
  114. Yang K, Zhu J, Zhang W, et al (2022) Litter decomposition and nutrient release from monospecific and mixed litters: Comparisons of litter quality, fauna and decomposition site effects. Journal of Ecology 110:1673-1686. https://doi.org/10.1111/1365-2745.13902
  115. Yang S, Poorter L, Sterck FJ, et al (2024a) Stem decomposition of temperate tree species is determined by stem traits and fungal community composition during early stem decay. Journal of Ecology. https://doi.org/10.1111/1365-2745.14295
  116. Yang W, Qu G, Kelly AR, et al (2024b) Positive effects of leguminous shrub encroachment on multiple ecosystem functions of alpine meadows and steppes greatly depended on increasing soil nutrient. Catena (Amst) 236:107745. https://doi.org/10.1016/j.catena.2023.107745
  117. Zhang D, Hui D, Luo Y, Zhou G (2008a) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology 1:85-93. https://doi.org/10.1093/jpe/rtn002
  118. Zhang N, Wan S, Li L, et al (2008b) Impacts of urea N addition on soil microbial community in a semi-arid temperate steppe in northern China. Plant Soil 311: 19-28. https://doi.org/10.1007/s11104-008-9650-0
  119. Zhou L, Li H, Shen H, et al (2017) Shrub-encroachment induced alterations in input chemistry and soil microbial community affect topsoil organic carbon in an Inner Mongolian grassland. Biogeochemistry 136:311-324. https://doi.org/10.1007/s10533-017-0396-8
  120. Zuo J, Fonck M, van Hal J, et al (2014) Diversity of macro-detritivores in dead wood is influenced by tree species, decay stage and environment. Soil Biol Biochem 78: 288-297. https://doi.org/10.1016/j.soilbio.2014.08.010
  121. Zuo J, Hefting MM, Berg MP, et al (2018) Is there a tree economics spectrum of decomposability? Soil Biol Biochem 119:135-142. https://doi.org/10.1016/j.soilbio.2018.01.019