link.springer.com

Pharmacology of the Meglitinide Analogs - Treatments in Endocrinology

  • ️Malaisse, Willy J.
  • ️Thu Aug 30 2012
  • Malaisse WJ. Stimulation of insulin release by non-sulfonylurea hypoglycemic agents: the meglitinide family. Horm Metab Res 1995; 27: 263–6

    Article  PubMed  CAS  Google Scholar 

  • Geisen K, Hitzel V, Ökomonopoulos R, et al. Inhibition of 3H-glibenclamide binding to sulfonylurea receptors by oral antidiabetics. Arzneimittel Forschung 1985; 35: 702–12

    Google Scholar 

  • Lins L, Brasseur R, Malaise WJ. Conformational analysis of non-sulfonylurea hypoglycemic agents of the meglitinide family. Biochem Pharmacol 1995; 50: 1879–84

    Article  PubMed  CAS  Google Scholar 

  • Garrino M-G, Meissner H-P, Henquin J-C. The non-sulfonylurea moiety of gliquidone mimics the effect of the parent molecule on pancreatic B-cells. Eur J Pharmacol 1986; 124: 309–16

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Martinez JA, Villanueva-Peñacarrillo ML, Valverde I, et al. Insulinotropic action of the non-sulfonylurea moiety of gliquidone in anaesthetized rats. Med sci Res 1997; 25: 807–9

    CAS  Google Scholar 

  • Pratley RE, Foley JE, Dunning BE. Rapid acting insulinotropic agents: restoration of early insulin secretion as a physiological approach to improve glucose control. Curr Pharm Des 2001; 7: 1375–97

    Article  PubMed  CAS  Google Scholar 

  • Dunning BE. New non-sulfonylurea insulin secretagogues. Expert Opin Investig Drugs 1997; 6: 1041–8

    Article  PubMed  CAS  Google Scholar 

  • Perfetti R, Mathur R, Egan JE. New insulin secretagogues for the treatment of type 2 diabetes. Dis Manag Clin Outcomes 1998; 1: 129–35

    Article  Google Scholar 

  • Perfetti R, Barnett PS, Mathur R, et al. Novel therapeutic strategies for the treatment of type 2 diabetes. Diabetes Metab Rev 1998; 14: 207–25

    Article  PubMed  CAS  Google Scholar 

  • Landgraf R. Meglitinide analogues in the treatment of type 2 diabetes mellitus. Drugs Aging 2000; 17: 411–25

    Article  PubMed  CAS  Google Scholar 

  • Dornhorst A. Insulinotropic meglitinide analogues. Lancet 2001; 358: 1709–16

    Article  PubMed  CAS  Google Scholar 

  • Malaisse WJ. Mechanism of action of a new class of insulin secretagogues. Exp Clin Endocrinol Diabetes 1999; 107Suppl. 4: S140–3

    Article  PubMed  CAS  Google Scholar 

  • Culy CR, Jarvis B. Repaglinide: a review of its therapeutic use in type 2 diabetes mellitus. Drugs 2001; 61: 1625–60

    Article  PubMed  CAS  Google Scholar 

  • Bakkali Nadi A, Malaisse-Lagae F, Malaisse WJ. Ionophoretic activity of meglitinide analogues. Diabetes Res 1994; 27: 61–71

    PubMed  CAS  Google Scholar 

  • Lins L, Brasseur R, Malaisse WJ. Conformation analysis of the calcium complexes formed by meglitinide analogs. Res Commun Mol Pathol Pharmacol 1995; 90: 153–64

    PubMed  CAS  Google Scholar 

  • Bakkali Nadi A, Malaisse-Lagae F, Malaisse WJ. Insulinotropic action of meglitinide analogs: concentrations-response relationship and nutrient dependency. Diabetes Res 1994; 27: 81–7

    Google Scholar 

  • Louchami K, Jijakli H, Sener A, et al. Effect of repaglinide upon nutrient metabolism, biosynthetic activity, cationic fluxes and insulin release in rat pancreatic islets. Res Commun Mol Pathol Pharmacol 1998; 99: 155–68

    PubMed  CAS  Google Scholar 

  • Van Onderbergen A, Malaisse-Lagae F, Malaisse WJ. Failure of meglitinide analogues to augment Ba2+-induced insulin release. Med sci Res 1995; 23: 371–2

    Google Scholar 

  • Malaisse WJ. Insulinotropic action of meglitinide analogues: modulation by an activator of ATP-sensitive K+ channels and high extracellular K+ concentrations. Pharmacol Res 1995; 32: 111–4

    Article  PubMed  CAS  Google Scholar 

  • Jijakli H, Ulusoy S, Malaisse WJ. Dissociation between the potency and reversibility of the insulinotropic action of two meglitinide analogues. Pharmacol Res 1996; 34: 105–8

    Article  PubMed  CAS  Google Scholar 

  • Viñambres C, Villanueva-Peñacarrillo ML, Valverde I, et al. Repaglinide preserves nutrient-stimulated biosynthetic activity in rat pancreatic islets. Pharmacol Res 1996; 34: 83–5

    Article  PubMed  Google Scholar 

  • Gromada J, Dissing S, Kofod H, et al. Effects of the hypoglycaemic drugs repaglinide and glibenclamide on ATP-sensitive potassium-channels and cytosolic calcium levels in βTC3 cells and rat pancreatic beta cells. Diabetologia 1995; 38: 1025–32

    Article  PubMed  CAS  Google Scholar 

  • Fuhlendorff J, Rorsman P, Kofod H, et al. Stimulation of insulin release by repaglinide and glibenclamide involves both common and distinct processes. Diabetes 1998; 47: 345–51

    Article  PubMed  CAS  Google Scholar 

  • Hu S, Wang S, Dunning BE. Tissue selectivity of antidiabetic agent nateglinide: study on cardiovascular and β-cell Katp channels. J Pharmacol Exp Ther 1999; 291: 1372–9

    PubMed  CAS  Google Scholar 

  • Hu S, Wang S, Fanelli B, et al. Pancreatic β-cell Katp channel activity and membrane-binding studies with nateglinide: a comparison with sulfonylureas and repaglinide. J Pharmacol Exp Ther 2000; 293: 444–52

    PubMed  CAS  Google Scholar 

  • Leclercq-Meyer V, Ladrière L, Fuhlendorff J, et al. Stimulation of insulin and somatostatin release by two meglitinide analogs. Endocrine 1997; 7: 311–7

    Article  PubMed  CAS  Google Scholar 

  • Louchami K, Ladrière L, Jijakli H, et al. Effect of repaglinide upon insulin secretion in islets from rats infused for two days with a hypertonic solution of D-glucose. Endocrine 1998; 8: 247–50

    Article  PubMed  CAS  Google Scholar 

  • Ladrière L, Malaisse-Lagae F, Fulhendorff J, et al. Repaglinide, glibenclamide and glimepiride administration to normal and hereditarily diabetic rats. Eur J Pharmacol 1997; 335: 227–34

    Article  PubMed  Google Scholar 

  • Ladrière L, Malaisse-Lagae F, Malaisse WJ. Effect of antidiabetic agents on the increase in glycemia and insulinemia caused by refeeding in hereditarily diabetic rats. Res Commun Mol Pathol Pharmacol 1997; 97: 53–9

    PubMed  Google Scholar 

  • Laghmich A, Ladrière L, Malaisse-Lagae F, et al. Pancreatic islet responsiveness to D-glucose after repeated administration of repaglinide. Eur J Pharmacol 1998; 348: 265–70

    Article  PubMed  CAS  Google Scholar 

  • Ampudia-Blasco FJ, Heinemann L, Bender R, et al. Comparative dose-related time-action profiles of glibenclamide and a new non-sulphonylurea drug, AGEE 623 ZW, during euglycaemic clamp in healthy subjects. Diabetologia 1994; 37: 703–7

    Article  PubMed  CAS  Google Scholar 

  • Juhl CB, Pørksen N, Hollingdal M, et al. Repaglinide acutely amplifies pulsatile insulin secretion by augmentation of burst mass with no effect on burst frequency. Diabetes Care 2000; 23: 675–81

    Article  PubMed  CAS  Google Scholar 

  • Owens DR, Luzio SD, Ismail I, et al. Increased prandial insulin secretion after administration of a single preprandial oral dose of repaglinide in patients with type 2 diabetes. Diabetes Care 2000; 23: 518–23

    Article  PubMed  CAS  Google Scholar 

  • Wolffenbuttel BH, Nijst L, Sels JPJE, et al. Effects of a new oral hypoglycaemic agent, repaglinide, on metabolic control in sulphonylurea-treated patients with NIDDM. Eur J Clin Pharmacol 1993; 45: 113–6

    Article  PubMed  CAS  Google Scholar 

  • Strange P, Schwartz SL, Graf RJ, et al. Pharmacokinetics, pharmacodynamics and dose-response relationships of repaglinide in type 2 diabetes. Diabetes Technol Ther 1999; 1: 247–56

    Article  PubMed  CAS  Google Scholar 

  • Damsbo P, Clauson P, Marbury TC, et al. A double-blind randomized comparison of meal-related glycemic control by repaglinide and glyburide in well-controlled type 2 diabetic patients. Diabetes Care 1999; 22: 789–94

    Article  PubMed  CAS  Google Scholar 

  • Damsbo P, Marbury TC, Hatorp V, et al. Flexible prandial glucose regulation with repaglinide in patients with type 2 diabetes. Diabetes Res Clin Pract 1999; 45: 31–9

    Article  PubMed  CAS  Google Scholar 

  • Hatorp V, Bayer T. Repaglinide bioavailability in the fed or fasting state [abstract]. J Clin Pharmacol 1997; 37: 875

    Google Scholar 

  • Hatorp V, Oliver S, Su C-APF. Bioavailability of repaglinide, a novel antidiabetic agent, administered orally in tablet or solution form or intravenously in healthy male volunteers. Int J Clin Pharmacol Ther 1998; 36: 636–41

    PubMed  CAS  Google Scholar 

  • van Heiningen PNM, Hatorp V, Kramer Nielsen K, et al. Absorption, metabolism and excretion of a single oral dose of 14C-repaglinide during repaglinide multiple dosing. Eur J Clin Pharmacol 1999; 55: 521–5

    Article  PubMed  Google Scholar 

  • Perentesis GP, Damsbo P, Müller PG, et al. Single dose pharmacokinetics and pharmacodynamics of repaglinide in type II diabetic patients [abstract]. J Clin Phamacol 1994; 34: 1021

    Google Scholar 

  • Hedberg TG, Huang W-C. Repaglinide: a double-blind, randomized dose-response study [abstract]. Diabetologia 1998; 41Suppl. 1: A235

    Google Scholar 

  • Hatorp V, Huang W-C, Strange P. Pharmacokinetic profiles of repaglinide in elderly subjects with type 2 diabetes. J Clin Endocrinol Metab 1999; 84: 1475–8

    Article  PubMed  CAS  Google Scholar 

  • Hatorp V, Walther KG, Christensen MS, et al. Single-dose pharmacokinetics of repaglinide in subjects with chronic liver disease. J Clin Pharmacol 2000; 40: 142–52

    Article  PubMed  CAS  Google Scholar 

  • Marbury TC, Ruckle JL, Hatorp V, et al. Pharmacokinetics of repaglinide in subjects with renal impairment. Clin Pharmacol Ther 2000; 67: 7–15

    Article  PubMed  CAS  Google Scholar 

  • Schumacher S, Abbasi I, Weise D, et al. Single and multiple-dose pharmacokinetics of repaglinide in patients with type 2 diabetes and renal impairment. Eur J Clin Pharmacol 2001; 57: 147–52

    Article  PubMed  CAS  Google Scholar 

  • Horton ES, Clinkingbeard C, Gatlin M, et al. Nateglinide alone and in combination with metformin improves glycemic control by reducing mealtime glucose levels in type 2 diabetes. Diabetes Care 2000; 23: 1660–5

    Article  PubMed  CAS  Google Scholar 

  • Bakkali Nadi A, Malaisse-Lagae F, Malaisse WJ. Ionophoretic properties of the non-sulphonylurea hypoglycaemic agents A-4166 and KAD-1229. Res Commun Mol Pathol Pharmacol 1995; 88: 339–47

    PubMed  CAS  Google Scholar 

  • Malaisse-Lagae F, Malaisse WJ. Fate of 3H- and 14C-labelled A-4166 in pancreatic islets. Acta Diabetol 1996; 33: 298–300

    Article  PubMed  CAS  Google Scholar 

  • Jijakli H, Ulusoy S, Malaisse WJ. Dynamics of the cationic and secretory responses to A-4166 in perifused pancreatic islets. Fundam Clin Pharmacol 1997; 11: 300–4

    Article  PubMed  CAS  Google Scholar 

  • Fujitani S, Yada T. A novel D-phenylalanine-derivative hypoglycemic agent A-4166 increases cytosolic free Ca2+ in rat pancreatic β-cells by stimulating Ca2+ influx. Endocrinology 1999; 134: 1395–400

    Article  Google Scholar 

  • Malaisse WJ, Sener A. Effect of N-[(trans-4-isopropylcyclohexyl)-carbonyl]-D-phenylalanine on nutrient catabolism in rat pancreatic islets. Gen Pharmacol 1998; 31: 451–4

    Article  PubMed  CAS  Google Scholar 

  • Viñambres C, Garcia-Martinez JA, Villanueva-Peñacarrillo ML, et al. Preservation of nutrient-stimulated biosynthetic activity in pancreatic islets exposed to a meglitinide analogue. Med sci Res 1995; 23: 779–80

    Google Scholar 

  • Jijakli H, Malaisse WJ. Preservation of protein biosynthesis in rat pancreatic islets exposed to A-4166. Med sci Res 1997; 25: 813–4

    CAS  Google Scholar 

  • Hu S, Wang S, Dunning BE. Effectiveness of nateglinide on in vitro insulin secretion from rat pancreatic islets desensitized to sulfonylureas. Int J Exp Diabetes Res 2001; 2: 73–9

    Article  PubMed  CAS  Google Scholar 

  • Hu S, Wang S, Dunning BE. Glucose-dependent and glucose-sensitizing insulino-tropic effect of nateglinide: comparison to sulfonylureas and repaglinide. Int J Exp Diabetes Res 2001; 2: 63–72

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Martinez JA, Vifiambres C, Villanueva-Peñacarrillo ML, et al. Comparison and synergism between the insulinotropic action of succinic acid monomethyl ester and N-[(trans-4-isopropylcyclohexyl)-carbonyl]-D-phenylalanine. Med sci Res 1995; 23: 777–8

    CAS  Google Scholar 

  • Laghmich A, Ladrière L, Dannacher H, et al. New esters of succinic acid and mixed molecules formed by such esters and a meglitinide analog: study of their insulinotropic potential. Pharmacol Res 2000; 41: 543–54

    Article  PubMed  CAS  Google Scholar 

  • Ladrière L, Björkling F, Malaisse WJ. Stimulation of insulin release in hereditarily diabetic rats by mixed molecules formed of nateglinide and a succinic acid ester. Int J Mol Med 2000; 5: 63–5

    PubMed  Google Scholar 

  • Laghmich A, Ladrière L, Malaisse-Lagae F, et al. Long-term effects of glibenclamide and nateglinide upon pancreatic islet function in normal and diabetic rats. Pharmacol Res 1999; 40: 475–82

    Article  PubMed  CAS  Google Scholar 

  • Courtois P, Jijakli H, Ladrière B, et al. Pharmacodynamics, insulinotropic action and hypoglycemic effect of nateglinide and glibenclamide in normal and diabetic rats. Int J Mol Med 2003; 11: 105–9

    PubMed  CAS  Google Scholar 

  • Kalbag JB, Water YH, Nedelman JR, et al. Mealtime glucose regulation with nateglinide in healthy volunteers: comparison with repaglinide and placebo. Diabetes Care 2001; 24: 73–7

    Article  PubMed  CAS  Google Scholar 

  • Whitelaw DC, Clark PM, Smith JM, et al. Effects of the new oral hypoglycaemic agent nateglinide on insulin secretion in type 2 diabetes mellitus. Diabet Med 2000; 17: 225–9

    Article  PubMed  CAS  Google Scholar 

  • Hanefeld M, Bouter KP, Dickinson S, et al. Rapid and short-acting mealtime insulin secretion with nateglinide controls both prandial and mean glycemia. Diabetes Care 2000; 23: 202–7

    Article  PubMed  CAS  Google Scholar 

  • Keilson L, Mather S, Walter YH, et al. Synergistic effects of nateglinide and meal administration on insulin secretion in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2000; 85: 1081–6

    Article  PubMed  CAS  Google Scholar 

  • Walter YH, Spratt DI, Garreffa S, et al. Mealtime glucose regulation by nateglinide in type-2 diabetes mellitus. Eur J Clin Pharmacol 2000; 56: 129–33

    Article  PubMed  CAS  Google Scholar 

  • Hollander PA, Schwartz SL, Gatlin MR, et al. Nateglinide, but not glyburide, selectively enhances early insulin release and more efficiently controls postmeal glucose excursions with less total insulin exposure [abstract]. Diabetes 2000; 49Suppl. 1: A111

    Google Scholar 

  • Hirschberg Y, Karara AH, Pietri AO, et al. Improved control of mealtime glucose excursions with coadministration of nateglinide and metformin. Diabetes Care 2000; 23: 349–53

    Article  PubMed  CAS  Google Scholar 

  • Choudhury S, Hirschberg Y, Filipek R, et al. Single-dose pharmacokinetics of nateglinide in subjects with hepatic cirrhosis. J Clin Pharmacol 2000; 40: 634–40

    Article  PubMed  CAS  Google Scholar 

  • Ohnota H, Koizumi T, Tsutsumi N, et al. Novel rapid- and short-acting hypoglycemic agent, a calcium(2s)-2-benzyl-3-(cis-hexahydro-2-isoindolinylcar-bonyl) propionate (KAD-1229) that acts on the sulfonylurea receptor: comparison of effects between KAD-1229 and gliclazide. J Pharmacol Exp Ther 1994; 269: 489–95

    PubMed  CAS  Google Scholar 

  • Mogami H, Shibata H, Nobusawa R, et al. Inhibition of ATP-sensitive K+ channel by a non-sulfonylurea compound KAD-1229 in a pancreatic β-cell line, MIN 6 cell. Eur J Pharmacol 1994; 269: 293–8

    Article  PubMed  CAS  Google Scholar 

  • Lins L, Brasseur R, Malaisse WJ, et al. Importance of the hydrophobic energy: structural determinant of a hypoglycemic drug of the meglitinide family by nuclear magnetic resonance and molecular modelling. Biochem Pharmacol 1996; 52: 1155–68

    Article  PubMed  CAS  Google Scholar 

  • Malaisse WJ, Sato F. Insulinotropic action of (2S)-2-benzyl-3-(cis-hexahydro-2-isoindolinylcarbonyl) propionate: I. Secretory and cationic aspects. Gen Pharmacol 1995; 26: 1313–8

    Article  PubMed  CAS  Google Scholar 

  • Malaisse WJ, Dard-Brunelle B. Binding of tritiated S21403 to an artificial phospholipid bilayer. Res Commun Mol Pathol Phamacol 1999; 103: 268–74

    Google Scholar 

  • Malaisse WJ, Bakkali Nadi A, Malaisse-Lagae F, et al. Insulinotropic action of (2S)-2-benzyl-3-(cis-hexahydro-2-isoindolinylcarbonyl)propionate: II. Ionophoretic and conformational aspects. Gen Pharmacol 1995; 26: 1319–25

    Article  PubMed  CAS  Google Scholar 

  • Ohnota H, Kobayahi M, Koizumi T, et al. In vitro insulinotropic action of a new non-sulfonylurea hypoglycemic agent, calcium (2S)-2-benzyl-3-(cis-hexahydro-2-isoindolinyl-carbonyl) propionate dihydrate (KAD-1229), in rat pancreatic B-cells. Biochem Pharmacol1995; 49: 165–71

    Article  PubMed  CAS  Google Scholar 

  • Van Onderbergen A, Malaisse-Lagae F, Malaisse WJ. Effects of ATP and hypoglycemic agents on 45Ca uptake by subcellular fractions prepared from rat pancreatic islets. Med sci Res 1995; 23: 843–4

    Google Scholar 

  • Ulusoy S, Malaisse WJ. Effect of the meglitinide analogue KAD-1229 on 45Ca outflow and insulin release in pancreatic islets. Diab Res 1996; 31: 27–31

    CAS  Google Scholar 

  • Louchami K, Jijakli H, Malaisse WJ. Effect of the meglitinide analog S21403 on cationic fluxes and insulin release in perifused rat pancreatic islets exposed to a high concentration of D-glucose. Pharmacol Res 1999; 40: 297–300

    Article  PubMed  CAS  Google Scholar 

  • Reimann F, Proks P, Ashcroft FM. Effects of mitiglinide (S21403) on Kir6.2/ SUR2A and Kir6.2/SUR2B types of ATP-sensitive potassium channel. Br J Pharmacol 2001; 132: 1542–8

    Article  PubMed  CAS  Google Scholar 

  • Ohnota H, Koizumi T, Kobayashi M, et al. Normalization of impaired glucose tolerance by the short-acting hypoglycemic agent calcium (2S)-2-benzyl-3-(cis-hexahydro-2-isoindolinylcarboxyl) propionate dihydrate (KAD-1229) in non-insulin-dependent diabetes mellitus rats. Can J Physiol Pharmacol 1995; 73: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Martin D, Bouzom F, Merdjan H. Building of a physiologically based mathematical model for dynamics of an antidiabetic agent. In: Third International Symposium on Measurements and Kinetics of In Vivo Drug Effects. Advances in simultaneous pharmacokinetic/pharmacodynamic modelling; 1988 May 27–30; Noordwijkerhout, The Netherlands. Leiden/Amsterdam: Center for Drug Research, 1998: 168–70

    Google Scholar 

  • Yamada N, Shigeta Y, Kaneko T, et al. Hypoglycemic effects and safety of a novel rapid-acting insulinotropic agent, KAD-1229, for NIDDM [abstract]. Diabetes 1996; 45Suppl. 2: 74A

    Google Scholar