cambridge.org

Calibration for Archaeological and Environmental Terrestrial Samples in the Time Range 26–50 ka cal BP | Radiocarbon | Cambridge Core

  • ️Tue Mar 04 2025

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For the older part of the radiocarbon dating range, the IntCal13 curve provides the “state of the art” for terrestrial calibration based on all available data. It is constructed from different records, each of which by themselves could be used as a “comparison tool,” depending on the research objectives. This paper discusses the pros and cons of different approaches that can be taken when using 14C dates from this time range where the agreement amongst the underlying data sets is poorer than in other time periods. The discussion is illustrated with example calibrations against IntCa09, IntCal13, and comparisons to the Suigetsu record. The examples and discussion arc aimed at users of terrestrial 14C dates, in particular Upper Paleolithic archaeologists and those working with environmental terrestrial materials in the same time range.

References

Baiter, M. 2006. Radiocarbon dating's final frontier. Science 313(5793):1560–3.Google Scholar

Björck, S, Koç, N, Skog, G. 2003. Consistently large marine reservoir ages in the Norwegian Sea during the Last Deglaciation. Quaternary Science Reviews 22(5–7):429–35.CrossRefGoogle Scholar

Bondevik, S, Mangerud, J, Birks, HH, Gulliksen, S, Reimer, P. 2006. Changes in North Atlantic radiocarbon reservoir ages during the Aller⊘d and Younger Dryas. Science 312(5779):1514–7.CrossRefGoogle Scholar

Bronk Ramsey, C, Buck, CE, Manning, SW, Reimer, P, van der Plicht, J. 2006. Developments in radiocarbon calibration for archaeology. Antiquity 80(310):783–8.Google Scholar

Bronk Ramsey, C, Staff, RA, Bryant, CL, Brock, F, Kitagawa, H, van der Plicht, J, Schlolaut, G, Marshall, MH, Brauer, A, Lamb, HF, Payne, RL, Tarasov, PE, Haraguchi, T, Gotanda, K, Yonenobu, H, Yokoyama, Y, Tada, R, Nakagawa, T. 2012. A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr B.P. Science 338(6105):370–4.CrossRefGoogle ScholarPubMed

Edwards, RL, Cheng, H, Wang, YJ, Yuan, DX, Kelly, MJ, Kong, XG, Wang, XF, Burnett, A, Smith, E. 2013. A refined Hulu and Dongge Cave climate record and the timing of the climate change during the last glacial cycle. Earth and Planetary Science Letters, .Google Scholar

Eiríksson, J, Larsen, G, Knudsen, KL, Heinemeier, J, Símonarson, LA. 2004. Marine reservoir age variability and water mass distribution in the Iceland Sea. Quaternary Science Reviews 23(20–22):2247–68.CrossRefGoogle Scholar

Hajdas, I, Taricco, C, Bonani, G, Beer, J, Bernasconi, SM, Wacker, L. 2011. Anomalous radiocarbon ages found in Campanian Ignimbrite deposit of the Mediterranean deep-sea core Ct85–5. Radiocarbon 53(4):575–83.CrossRefGoogle Scholar

Hoffmann, DL, Beck, JW, Richards, DA, Smart, PL, Singaraycr, JS, Ketchmark, T, Hawkesworth, CJ. 2010. Towards radiocarbon calibration beyond 28 ka using speleothems from the Bahamas. Earth and Planetary Science Letters 289(1–2):110.CrossRefGoogle Scholar

Hughen, K, Southon, J, Lehman, S, Bertrand, C, Turnbull, J. 2006. Marine-derived 14C calibration and activity record for the past 50,000 years updated from the Cariaco Basin. Quaternary Science Reviews 25(23–24):3216–27.CrossRefGoogle Scholar

Kitagawa, H, van der Plicht, J. 1998. Atmospheric radiocarbon calibration to 45,000 yr B.P.: Late Glacial fluctuations and cosmogenic isotope production. Science 279(5354):1187–90.CrossRefGoogle Scholar

Lowe, J, Barton, N, Blockley, S, Bronk Ramsey, C, Cullen, VL, Davies, W, Gamble, C, Grant, K, Hardiman, M, Housley, R, Lane, CS, Lee, S, Lewis, M, MacLeod, A, Menzies, M, Müller, W, Pollard, M, Price, C, Roberts, AP, Rohling, EJ, Satow, C, Smith, VC, Stringer, CB, Tomlinson, EL, White, D, Albert, P, Arienzo, I, Barker, G, Boric, S, Carandente, A, Civetta, L, Ferrier, C, Guadelli, J-L, Karkanas, P, Koumouzelis, M, Müller, UC, Orsi, G, Pross, J, Rosi, M, Shalamanov-Korobar, L, Sirakov, N, Tzedakis, PC. 2012. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards. Proceedings of the National Academy of Sciences of the USA 109(34):13,5327.CrossRefGoogle ScholarPubMed

Mellars, P. 2006. A new radiocarbon revolution and the dispersal of modern humans in Eurasia. Nature 439(7079):931–5.CrossRefGoogle ScholarPubMed

Muscheler, R, Beer, J, Kubik, PW, Synal, H-A. 2005. Geomagnetic field intensity during the last 60,000 years based on 10Be and 36Cl from the Summit ice cores and 14C. Quaternary Science Reviews 24(16–17):1849–60.CrossRefGoogle Scholar

Niu, M, Heaton, TJ, Blackwell, PG, Buck, CE. 2013. The Bayesian approach to radiocarbon calibration curve estimation: the IntCal13, Marine 13, and SHCal13 methodologies. Radiocarbon 55(4), .CrossRefGoogle Scholar

Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, WJ, Bertrand, C, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hughen, KA, Kromer, B, McCormac, FG, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar

Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.CrossRefGoogle Scholar

Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffman, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013a. IntCal 13 and Marine 13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4), .CrossRefGoogle Scholar

Scott, EM. 2013. Radiocarbon dating: sources of error. In: Elias, S, Mock, C, editors. Encyclopedia of Quaternary Science. Amsterdam: Elsevier, p 324–8.Google Scholar

Southon, J, Noronha, AL, Cheng, H, Edwards, RL, Wang, Y. 2012. A high-resolution record of atmospheric 14C based on Hulu Cave speleothem H82. Quaternary Science Reviews 33:3241.CrossRefGoogle Scholar

Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137–89.CrossRefGoogle Scholar

Talamo, S, Hughen, KA, Kromer, B, Reimer, PJ. 2012. Debates over Palaeolithic chronology - the reliability of 14C is confirmed. Journal of Archaeological Science 39(7):2464–7.CrossRefGoogle Scholar

Valladas, H, Clottes, J, Geneste, J-M, Garcia, MA, Arnold, M, Cachier, H, Tisnérat-Laborde, N. 2001. Palaeolithic paintings: evolution of prehistoric cave art. Nature 413(6855):479.CrossRefGoogle ScholarPubMed

van Andel, TH. 2005. The ownership of time: approved 14C calibration or freedom of choice? Antiquity 79(306):944–8.CrossRefGoogle Scholar

van der Plicht, J, Beck, JW, Bard, E, Baillie, MGL, Blackwell, PG, Buck, CE, Friedrich, M, Guilderson, TP, Hughen, KA, Kromer, B, McCormac, FG, Bronk Ramsey, C, Reimer, PJ, Reimer, RW, Remmele, S, Richards, DA, Southon, JR, Stuiver, M, Weyhenmeyer, CE. 2004. NotCal04—comparison/calibration 14C records 26–50 cal kyr BP. Radiocarbon 46(3):1225–38.CrossRefGoogle Scholar

Vogel, JC, Kronfeld, J. 1997. Calibration of radiocarbon dates for the Late Pleistocene using U/Th dates on stalagmites. Radiocarbon 39(1):2732.CrossRefGoogle Scholar