2-deoxy-D-glucose combined with ferulic acid enhances radiation response in non-small cell lung carcinoma cells
- ️N. Prasad
- ️Sat Oct 01 2011
Abstract
The present study was undertaken to investigate the radiosensitizing effects of 2-deoxy-D-glucose (2DG), a glycolytic inhibitor, and ferulic acid (FA), a phenolic prooxidant, in relatively radioresistant human non-small cell lung carcinoma cells (NCI-H460). NCI-H460 cells were treated with 4 mM 2DG and/or 53.8 µM FA for 24 h and then exposed to 2 Gy irradiation. Compared to cells that were 2 Gy-irradiated alone (50%), FA and 2DG with radiation (FA+2DG+IR) showed additional decrease in cell viability (15%). This has been further validated by decreased (86%) colony formation in 2DG+FA+IR group compared to 2DG (29%), FA (24%) and IR (37%) group alone. Increased apoptotic cells (84%) in 2DG+FA+IR group further confirm the radiosensitizing property of 2DG or FA. In NCI-H460 cells 2DG decreased NADPH levels (10%) and FA increased ROS levels leading to enhanced oxidative damage in the 2DG+FA+IR group. This was reflected as altered mitochondrial membrane potential, increased lipid peroxidative markers (TBARS), DNA damage and decreased intracellular glutathione (GSH) levels in combined treatment groups when compared to radiation or 2DG or FA treatment alone. The present study suggests that FA and 2DG act by increasing oxidative damage in NCI-H460 cells.
[1] Lee Y.S., Oh J.H., Yoon S., Kwon M.S., Song C.W., Kim K.H., et al., Differential gene expression profiles of radioresistant non-small-cell lung cancer cell lines established by fractionated irradiation: tumor protein p53-inducible protein 3 confers sensitivity to ionizing radiation, Int. J. Radiat. Oncol. Biol. Phys., 2010, 77, 858–866 http://dx.doi.org/10.1016/j.ijrobp.2009.12.07610.1016/j.ijrobp.2009.12.076Search in Google Scholar PubMed
[2] Kim K.W., Moretti L., Lu B., M867, a Novel Selective Inhibitor of Caspase-3 Enhances Cell Death and Extends Tumor Growth Delay in Irradiated Lung Cancer Models, PLoS One, 2008, 3, e2275 http://dx.doi.org/10.1371/journal.pone.000227510.1371/journal.pone.0002275Search in Google Scholar PubMed PubMed Central
[3] Dwarakanath B.S., Singh D., Banerji A.K., Sarin R., Venkataramana N.K., Jalali R., et al., Clinical studies for improving radiotherapy with 2-deoxy-D-glucose: Present status and future prospects, J. Cancer. Res. Ther., 2009, 5, S21–S26 http://dx.doi.org/10.4103/0973-1482.5513610.4103/0973-1482.55136Search in Google Scholar PubMed
[4] Spitz D.R., Sim J.E., Ridnour L.A., Galoforo S.S., Lee Y.J., Glucose deprivation-induced oxidative stress in human tumor cells: a fundamental defect in metabolism?, Ann. N. Y. Acad Sci., 2000, 899, 349–362 http://dx.doi.org/10.1111/j.1749-6632.2000.tb06199.x10.1111/j.1749-6632.2000.tb06199.xSearch in Google Scholar PubMed
[5] Lin X., Zhang F., Bradbury C.M., Kaushal A., Li L., Spitz D.R., et al., 2-deoxy-D-glucose-induced cytotoxicity and radiosensitization in tumor cells is mediated via disruptions in thiol metabolism, Cancer Res., 2003, 63, 3413–3417 Search in Google Scholar
[6] Ahmad I.M., Aykin-Burns N., Sim J.E., Walsh S.A., Higashikubo R., Buettner G.R., et al., Mitochondrial O 2*− and H2O2 mediate glucose deprivation-induced stress in human cancer cells, J. Biol. Chem., 2005, 280, 4254–4263 http://dx.doi.org/10.1074/jbc.M41166220010.1074/jbc.M411662200Search in Google Scholar PubMed
[7] Coleman M.C., Asbury C.R., Daniels D., Du J., Aykin-Burns N., Smith B.J., et al., 2-deoxy-Dglucose causes cytotoxicity, oxidative stress, and radiosensitization in pancreatic cancer, Free Radic. Biol. Med., 2008, 44, 322–331 http://dx.doi.org/10.1016/j.freeradbiomed.2007.08.03210.1016/j.freeradbiomed.2007.08.032Search in Google Scholar PubMed
[8] Aykin-Burns N., Ahmad I.M., Zhu Y., Oberley L.W., Spitz D.R., Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation, Biochem. J., 2009, 418, 29–37 http://dx.doi.org/10.1042/BJ2008125810.1042/BJ20081258Search in Google Scholar PubMed PubMed Central
[9] Varma S.D., Devamanoharan P.S., Ali A.H., Prevention of intracellular oxidative stress to lens by pyruvate and its ester, Free Radic. Res., 1998, 28, 131–135 http://dx.doi.org/10.3109/1071576980906579910.3109/10715769809065799Search in Google Scholar PubMed
[10] Kurtoglu M., Gao N., Shang J., Maher J.C., Lehrman M.A., Wangpaichitr M., et al., Under normoxia, 2-deoxy-D-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation, Mol. Cancer Ther., 2007, 6, 3049–3058 http://dx.doi.org/10.1158/1535-7163.MCT-07-031010.1158/1535-7163.MCT-07-0310Search in Google Scholar PubMed
[11] Merchan J.R., Kovacs K., Railsback J.W., Kurtoglu M., Jing Y., Pina Y., et al., Antiangiogenic activity of 2-deoxy-D-glucose, PLoS One, 2010, 5, e13699 http://dx.doi.org/10.1371/journal.pone.001369910.1371/journal.pone.0013699Search in Google Scholar PubMed PubMed Central
[12] Woodward G.E., Hudson M.T., The effect of 2-deoxy-D-glucose on glycolysis and respiration of tumor and normal tissues, Cancer Res., 1954, 14, 599–605 Search in Google Scholar
[13] Park J.H., Kim E.J., Jang H.Y., Shim H., Lee K.K., Jo H.J., et al., Combination treatment with arsenic trioxide and sulindac enhances apoptotic cell death in lung cancer cells via activation of oxidative stress and mitogen-activated protein kinases, Oncol. Rep., 2008, 20, 379–384 Search in Google Scholar
[14] Trachootham D., Alexandre J., Huang P., Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?, Nat. Rev. Drug Discov., 2009, 8, 579–591 http://dx.doi.org/10.1038/nrd280310.1038/nrd2803Search in Google Scholar
[15] Fan G.J., Jin X.L., Qian Y.P., Wang Q., Yang R.T., Dai F., et al., Hydroxycinnamic acids as DNA-cleaving agents in the presence of Cu(II) ions: mechanism, structure-activity relationship, and biological implications, Chemistry, 2009, 15, 12889–12899 http://dx.doi.org/10.1002/chem.20090162710.1002/chem.200901627Search in Google Scholar
[16] Lee K.W., Lee H.J., The roles of polyphenols in cancer chemoprevention, Biofactors, 2006, 26, 105–121 http://dx.doi.org/10.1002/biof.552026020210.1002/biof.5520260202Search in Google Scholar
[17] Azam S., Hadi N., Khan N.U., Hadi S.M., Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: implications for anticancer properties, Toxicol. In Vitro, 2004, 18, 555–561 http://dx.doi.org/10.1016/j.tiv.2003.12.01210.1016/j.tiv.2003.12.012Search in Google Scholar
[18] Tan J., Wang B., Zhu L., DNA binding and oxidative DNA damage induced by a quercetin copper (II) complex: potential mechanism of its antitumor properties, J. Biol. Inorg. Chem., 2009, 14, 727–739 http://dx.doi.org/10.1007/s00775-009-0486-810.1007/s00775-009-0486-8Search in Google Scholar
[19] Garg A.K., Buchholz T.A., Aggarwal B.B., Chemosensitization and radiosensitization of tumors by plant polyphenols, Antioxid. Redox Signal., 2005, 7, 1630–1647 http://dx.doi.org/10.1089/ars.2005.7.163010.1089/ars.2005.7.1630Search in Google Scholar
[20] Prasad N.R., Srinivasan M., Pugalendi K.V., Menon V.P., Protective effect of ferulic acid on gammaradiation-induced micronuclei, dicentric aberration and lipid peroxidation in human lymphocytes, Mutat. Res., 2006, 603, 129–134 10.1016/j.mrgentox.2005.11.002Search in Google Scholar
[21] Mosmann T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay, J. Immunol. Methods, 1983, 65, 55–63 http://dx.doi.org/10.1016/0022-1759(83)90303-410.1016/0022-1759(83)90303-4Search in Google Scholar
[22] Simons A.L., Ahmad I.M., Mattson D.M., Dornfeld K.J., Spitz D.R., 2-Deoxy-D-glucose (2DG) combined with cisplatin enhances cytotoxicity via metabolic oxidative stress in human head and neck cancer cells, Cancer Res., 2007, 67, 3364–3370 http://dx.doi.org/10.1158/0008-5472.CAN-06-371710.1158/0008-5472.CAN-06-3717Search in Google Scholar
[23] Ellman G.L., Tissue sulfhydryl groups, Arch. Biochem. Biophys., 1959, 82, 70–77 http://dx.doi.org/10.1016/0003-9861(59)90090-610.1016/0003-9861(59)90090-6Search in Google Scholar
[24] Zhang Z., Yu J., Stanton R.C., A method for determination of pyridine nucleotides using a single extract, Anal. Biochem., 2000, 285, 163–167 http://dx.doi.org/10.1006/abio.2000.470110.1006/abio.2000.4701Search in Google Scholar
[25] Bhosle S.M., Huilgol N.G., Mishra K.P., Enhancement of radiation-induced oxidative stress and cytotoxicity in tumor cells by ellagic acid, Clin. Chim. Acta., 2005, 359, 89–100 http://dx.doi.org/10.1016/j.cccn.2005.03.03710.1016/j.cccn.2005.03.037Search in Google Scholar
[26] Niehaus W.G. Jr., Samuelsson B., Formation of malondialdehyde from phospholipid arachidonate during microsomal lipid peroxidation, Eur. J. Biochem., 1968, 6, 126–130 http://dx.doi.org/10.1111/j.1432-1033.1968.tb00428.x10.1111/j.1432-1033.1968.tb00428.xSearch in Google Scholar
[27] Jiang Z.Y., Hunt J.V., Wolff S.P., Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein, Anal. Biochem., 1992, 202, 384–389 http://dx.doi.org/10.1016/0003-2697(92)90122-N10.1016/0003-2697(92)90122-NSearch in Google Scholar
[28] Singh N.P., McCoy M.T., Tice R.R., Schneider E.L., A simple technique for quantification of low levels of DNA damage in individual cells, Exp. Cell Res., 1988, 175, 184–191 http://dx.doi.org/10.1016/0014-4827(88)90265-010.1016/0014-4827(88)90265-0Search in Google Scholar
[29] Konca K., Lankoff A., Banasik A., Lisowska H., Kuszewski T., Gozdz S., et al., A cross-platform public domain PC image-analysis program for the comet assay, Mutat. Res., 2003, 534, 15–20 10.1016/S1383-5718(02)00251-6Search in Google Scholar
[30] Olive P.L., Banath J.B., Durand R.E., Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the “comet” assay, Radiat. Res., 1990, 122, 86–94 http://dx.doi.org/10.2307/357758710.2307/3577587Search in Google Scholar
[31] Lakshmi S., Dhanaya G.S., Joy B., Padmaja G., Remani P., Inhibitory effect of an extract of Curcuma Zedoariae on human cervical carcinoma cells, Med. Chem. Res., 2008, 17, 335–344 http://dx.doi.org/10.1007/s00044-007-9069-910.1007/s00044-007-9069-9Search in Google Scholar
[32] Andringa K.K., Coleman M.C., Aykin-Burns N., Hitchler M.J., Walsh S.A., Domann F.E., et al., Inhibition of glutamate cysteine ligase activity sensitizes human breast cancer cells to the toxicity of 2-deoxy-D-glucose, Cancer Res., 2006, 66, 1605–1610 http://dx.doi.org/10.1158/0008-5472.CAN-05-346210.1158/0008-5472.CAN-05-3462Search in Google Scholar PubMed
[33] Maschek G., Savaraj N., Priebe W., Braunschweiger P., Hamilton K., Tidmarsh G.F., et al., 2-Deoxy-Dglucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo, Cancer Res., 2004, 64, 31–34 http://dx.doi.org/10.1158/0008-5472.CAN-03-329410.1158/0008-5472.CAN-03-3294Search in Google Scholar
[34] Dwarakanath B.S., Khaitan D., Ravindranath T., 2-Deoxy-D-glucose enhances the cytotoxicity of topoisomerase inhibitors in human tumor cell lines, Cancer Biol. Ther., 2004, 3, 864–870 http://dx.doi.org/10.4161/cbt.3.9.104010.4161/cbt.3.9.1040Search in Google Scholar
[35] Chendil D., Ranga R.S., Meigooni D., Sathishkumar S., Ahmed M.M., Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3, Oncogene, 2004, 23, 1599–1607 http://dx.doi.org/10.1038/sj.onc.120728410.1038/sj.onc.1207284Search in Google Scholar
[36] Javvadi P., Segan A.T., Tuttle S.W., Koumenis C., The chemopreventive agent curcumin is a potent radiosensitizer of human cervical tumor cells via increased ROS production and over activation of the mitogen-activated protein kinase pathway, Mol. Pharmacol., 2008, 73, 1491–1501 http://dx.doi.org/10.1124/mol.107.04355410.1124/mol.107.043554Search in Google Scholar
[37] Varadkar P., Dubey P., Krishna M., Verma N., Modulation of radiation-induced protein kinase C activity by phenolics, J. Radiol. Prot., 2001, 21, 361–370 http://dx.doi.org/10.1088/0952-4746/21/4/30410.1088/0952-4746/21/4/304Search in Google Scholar
[38] Hadzic T., Aykin-Burns N., Zhu Y., Coleman M.C., Leick K., Jacobson G.M., et al., Paclitaxel combined with inhibitors of glucose and hydroperoxide metabolism enhances breast cancer cell killing via H2O2-mediated oxidative stress, Free Radic. Biol. Med., 2010, 48, 1024–1033 http://dx.doi.org/10.1016/j.freeradbiomed.2010.01.01810.1016/j.freeradbiomed.2010.01.018Search in Google Scholar
[39] Vander Heiden M.G., Cantley L.C., Thompson C.B., Understanding the Warburg effect: the metabolic requirements of cell proliferation, Science, 2009, 324, 1029–1033 http://dx.doi.org/10.1126/science.116080910.1126/science.1160809Search in Google Scholar
[40] Nath K.A., Ngo E.O., Hebbel R.P., Croatt A.J., Zhou B., Nutter L.M., Alpha-ketoacids scavenge H2O2 in vitro and in vivo and reduce menadione-induced DNA injury and cytotoxicity, Am. J. Physiol., 1995, 268, C227–C236 10.1152/ajpcell.1995.268.1.C227Search in Google Scholar
[41] Tuttle S.W., Varnes M.E., Mitchell J.B., Biaglow J.E., Sensitivity to chemical oxidants and radiation in CHO cell lines deficient in oxidative pentose cycle activity, Int. J. Radiat. Oncol. Biol. Phys., 1992, 22, 671–675 http://dx.doi.org/10.1016/0360-3016(92)90500-H10.1016/0360-3016(92)90500-HSearch in Google Scholar
[42] Halliwell B., Gutteridge J.M.C., Free radicals in biology and medicine, Clarendon Press, Oxford, 1989 Search in Google Scholar
[43] Srinivas P., Gopinath G., Banerji A., Dinakar A., Srinivas G., Plumbagin induces reactive oxygen species, which mediate apoptosis in human cervical cancer cells, Mol. Carcinog., 2004, 40, 201–211 http://dx.doi.org/10.1002/mc.2003110.1002/mc.20031Search in Google Scholar
[44] Dwarkanath B.S., Zolzer F., Chandana S., Bauch T., Adhikari J.S., Muller W.U., et al., Heterogeneity in 2-deoxy-D-glucose-induced modifications in energetics and radiation responses of human tumor cell lines, Int. J. Radiat. Oncol. Biol. Phys., 2001, 50, 1051–1061 http://dx.doi.org/10.1016/S0360-3016(01)01534-610.1016/S0360-3016(01)01534-6Search in Google Scholar
[45] Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M., Telser J., Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell Biol., 2007, 39, 44–84 http://dx.doi.org/10.1016/j.biocel.2006.07.00110.1016/j.biocel.2006.07.001Search in Google Scholar
[46] Zoberi I., Bradburyb C.M., Curry H.A., Bisht K.S., Goswami P.C., Roti Roti J.L., et al., Radiosensitizing and anti-proliferative effects of resveratrol in two human cervical tumor cell lines, Cancer Lett., 2002, 175, 165–173 http://dx.doi.org/10.1016/S0304-3835(01)00719-410.1016/S0304-3835(01)00719-4Search in Google Scholar
[47] Tsujimoto Y., Shimizu S., Role of the mitochondrial membrane permeability transition in cell death, Apoptosis, 2007, 12, 835–840 http://dx.doi.org/10.1007/s10495-006-0525-710.1007/s10495-006-0525-7Search in Google Scholar PubMed
[48] Liu B., Chen Y., St Clair D.K., ROS and p53: a versatile partnership, Free Radic. Biol. Med., 2008, 44, 1529–1535 http://dx.doi.org/10.1016/j.freeradbiomed.2008.01.01110.1016/j.freeradbiomed.2008.01.011Search in Google Scholar PubMed PubMed Central
[49] Bauer M.K., Vogt M., Los M., Siegel J., Wesselborg S., Schulze-Osthoff K., Role of reactive oxygen intermediates in activation induced CD95 (APO-1/Fas) ligand expression, J. Biol. Chem., 1998, 273, 8048–8055 http://dx.doi.org/10.1074/jbc.273.14.804810.1074/jbc.273.14.8048Search in Google Scholar PubMed
[50] Garcia-Alonso J., Ros G., Periago M.J., Antiproliferative and cytoprotective activities of a phenolic-rich juice in HepG2 cells, Food Res. Int., 2006, 39, 982–991 http://dx.doi.org/10.1016/j.foodres.2006.07.00110.1016/j.foodres.2006.07.001Search in Google Scholar
[51] Jee S.H., Shen S.C., Tseng C.R., Chiu H.C., Kuo M.L., Curcumin induces a p53-dependent apoptosis in human basal cell carcinoma cells, J. Invest. Dermatol., 1998, 111, 656–661 http://dx.doi.org/10.1046/j.1523-1747.1998.00352.x10.1046/j.1523-1747.1998.00352.xSearch in Google Scholar PubMed
[52] Watson J.L., Hill R., Lee P.W., Giacomantonio C.A., Hoskin D.W., Curcumin induces apoptosis in HCT-116 human colon cancer cells in a p21-independent manner, Exp. Mol. Pathol., 2008, 84, 230–233 http://dx.doi.org/10.1016/j.yexmp.2008.02.00210.1016/j.yexmp.2008.02.002Search in Google Scholar PubMed
[53] Maher J.C., Krishnan A., Lampidis T.J., Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs aerobic conditions, Cancer Chemother. Pharmacol., 2004, 53, 116–122 http://dx.doi.org/10.1007/s00280-003-0724-710.1007/s00280-003-0724-7Search in Google Scholar PubMed
Published Online: 2011-9-2
Published in Print: 2011-10-1
© 2011 Versita Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.