link.springer.com

Reliable Kalman Filtering with Conditionally Local Calculations in Wireless Sensor Networks - Automatic Control and Computer Sciences

  • ️Kalita, D. I.
  • ️Wed May 03 2023

REFERENCES

  1. Hongna, J., Hongwei, J., and Zhongfei, B., The application strategy for intelligent wireless sensor network in flight test, 14th IEEE Int. Conf. on Electronic Measurement & Instruments (ICEMI), Changsha, China, 2019, IEEE, 2019, pp. 815–819. https://doi.org/10.1109/ICEMI46757.2019.9101769

  2. Kontaxis, D.E., Tsoulos, G., and Athanasiadou, G., Wireless sensor network topology design for building information modelling, 10th Int. Conf. on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 2021, IEEE, 2021, pp. 1–4. https://doi.org/10.1109/MOCAST52088.2021.9493367

  3. Gharaei, N., Al-Otaibi, Ya.D., and Rahim, S., Alyamani, N. A., Khani, K. K. and Malebary, S. J., Broker-based nodes recharging scheme for surveillance wireless rechargeable sensor networks, IEEE Sens. J., 2021, vol. 21, no. 7, pp. 9242–9249. https://doi.org/10.1109/JSEN.2021.3053203

    Article  Google Scholar 

  4. Liu, J., Huang, K., and Yao, X., Common-innovation subspace pursuit for distributed compressed sensing in wireless sensor networks, IEEE Sens. J., 2019, vol. 19, no. 3, pp. 1091–1103. https://doi.org/10.1109/JSEN.2018.2881056

    Article  Google Scholar 

  5. Elfaramawy, T., Fall, Ch.L., Arab, S., Morissette, M., Lellouche, F., and Gosselin, B.A., Wireless respiratory monitoring system using a wearable patch sensor network, IEEE Sens. J., 2019, vol. 19, no. 2, pp. 650–657. https://doi.org/10.1109/JSEN.2018.2877617

    Article  Google Scholar 

  6. Brloznik, M., Petrič, A.D., Kos, V.K., Rashkovska, A., and Avbelj, V., Wireless body sensor for electrocardiographic monitoring in equine medicine, 42nd Int. Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 2019, IEEE, 2019, pp. 279–283. https://doi.org/10.23919/MIPRO.2019.8756965

  7. Karimi-Bidhendi, S., Guo, J., and Jafarkhani, H., Energy-efficient node deployment in heterogeneous two-tier wireless sensor networks with limited communication range, IEEE Trans. Wireless Commun., 2021, vol. 20, no. 1, pp. 40–55. https://doi.org/10.1109/TWC.2020.3023065

    Article  Google Scholar 

  8. Li, S., Feng, J., He, W., Qi, R., and Guo, H., Health assessment for a sensor network with data loss based on belief rule base, IEEE Access, 2020, vol. 8, pp. 126347–126357. https://doi.org/10.1109/ACCESS.2020.3007899

    Article  Google Scholar 

  9. Cao, X., Zhu, G., Xu, J., and Huang, K., Cooperative interference management for over-the-air computation networks, IEEE Trans. Wireless Commun., 2021, vol. 20, no. 4, pp. 2634–2651. https://doi.org/10.1109/TWC.2020.3043787

    Article  Google Scholar 

  10. He, X., Xue, W., and Fang, H., Consistent distributed state estimation with global observability over sensor network, Automatica, 2018, vol. 92, pp. 162–172. https://doi.org/10.1016/j.automatica.2018.03.029

    Article  MathSciNet  MATH  Google Scholar 

  11. Vazquez-Olguin, M., Shmaliy, Yu.S., and Ibarra-Manzano, O.G., Distributed UFIR filtering over WSNs with consensus on estimates, IEEE Trans. Ind. Inf., 2020, vol. 16, no. 3, pp. 1645–1654. https://doi.org/10.1109/TII.2019.2930649

    Article  Google Scholar 

  12. Fang, J., Qin, X., Chen, Ch., and Liu, Ya., State estimation of networked control systems over digital communication channels, Autom. Control Comput. Sci., 2021, vol. 55, no. 2, pp. 148–152. https://doi.org/10.3103/S0146411621020073

    Article  Google Scholar 

  13. Dong, P., Jing, Zh., Leung, H., Shen, K., and Li, M., Robust consensus nonlinear information filter for distributed sensor networks with measurement outliers, IEEE Trans. Cybern., 2019, vol. 49, no. 10, pp. 3731–3743. https://doi.org/10.1109/TCYB.2018.2850368

    Article  Google Scholar 

  14. Wang, Zh., Chen, D., and Hu, J., Distributed variance-constrained filtering for time-varying systems with multiplicative noises and randomly occurring nonlinearities over sensor networks, 2018 Chinese Control and Decision Conf. (CCDC), Shenyang, China, 2018, IEEE, 2018, pp. 4638–4643. https://doi.org/10.1109/CCDC.2018.8407933

  15. Yang, Zh., Ran, Ch., and Deng, Z., Robust measurement fusion Kalman predictors for systems with uncertain-variance multiplicative and additive noises, 29th Chinese Control and Decision Conf. (CCDC), Chongqing, China, 2017, IEEE, 2017, pp. 425–431. https://doi.org/10.1109/CCDC.2017.7978132

  16. Challagundla, S., Chitraganti, Sh., and Wali, P.K., Event-based state estimation with multiplicative measurement noise and correlated additive noises, IEEE Control Syst. Lett., 2020, vol. 4, no. 3, pp. 554–559. https://doi.org/10.1109/LCSYS.2020.2973918

    Article  MathSciNet  Google Scholar 

  17. Li, Ya., Li, J., Qi, J., and Chen, L., Robust cubature Kalman filter for dynamic state estimation of synchronous machines under unknown measurement noise statistics, IEEE Access, 2019, vol. 7, pp. 29139–29148. https://doi.org/10.1109/ACCESS.2019.2900228

    Article  Google Scholar 

  18. Stojanovic, V., He, S., and Zhang, B., State and parameter joint estimation of linear stochastic systems in presence of faults and non-Gaussian noises, Int. J. Robust Nonlinear Control, 2020, vol. 30, no. 16, pp. 6683–6700. https://doi.org/10.1002/rnc.5131

    Article  MathSciNet  Google Scholar 

  19. Stojanovic, V. and Nedic, N., Joint state and parameter robust estimation of stochastic nonlinear systems, Int. J. Robust Nonlinear Control, 2016, vol. 26, no. 14, pp. 3058–3074. https://doi.org/10.1002/rnc.3490

    Article  MathSciNet  MATH  Google Scholar 

  20. Qin, J., Wang, J., Shi, L., and Kang, Y., Randomized consensus-based distributed Kalman filtering over wireless sensor networks, IEEE Trans. Autom. Control, 2021, vol. 66, no. 8, pp. 3794–3801. https://doi.org/10.1109/TAC.2020.3026017

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, W., Chen, L., Qin, M., and Wang, W., Statistical inference-based distributed blind estimation in wireless sensor networks, IEEE Access, 2019, vol. 7, pp. 150355–150368. https://doi.org/10.1109/ACCESS.2019.2947433

    Article  Google Scholar 

  22. Akhtar, J. and Rajawat, K., Distributed sequential estimation in wireless sensor networks, IEEE Trans. Wireless Commun., 2018, vol. 17, no. 1, pp. 86–100. https://doi.org/10.1109/TWC.2017.2762672

    Article  Google Scholar 

  23. Zhou, J., Gu, G., and Chen, X., Distributed Kalman filtering over wireless sensor networks in the presence of data packet drops, IEEE Trans. Autom. Control, 2019, vol. 64, no. 4, pp. 1603–1610. https://doi.org/10.1109/TAC.2018.2854644

    Article  MathSciNet  MATH  Google Scholar 

  24. Battilotti, S. and Cacace, F., d’Angelo, M. and Germani, A., Distributed Kalman filtering over sensor networks with unknown random link failures, IEEE Control Syst. Lett., 2018, vol. 2, no. 4, pp. 587–592. https://doi.org/10.1109/LCSYS.2018.2845304

    Article  MathSciNet  Google Scholar 

  25. Goh, Sh.T., Zekavat, S.A., and Abdelkhalik, O., An introduction to Kalman filtering implementation for localization and tracking applications, Handbook of Position Location: Theory, Practice, and Advances, Zekavat, S.A. and Buehrer, R.M., Eds., Hoboken, N.J.: John Wiley & Sons, 2019, 2nd ed., pp. 143–195. https://doi.org/10.1002/9781119434610.ch5

    Book  Google Scholar 

  26. Falletti, E. and Falco, G., Kalman Filter-based approaches for positioning: Integrating global positioning with inertial sensors, Handbook of Position Location: Theory, Practice, and Advances, Zekavat, S.A. and Buehrer, R.M., Eds., Hoboken, N.J.: John Wiley & Sons, 2019, 2nd ed., pp. 763–838. https://doi.org/10.1002/9781119434610.ch22

    Book  Google Scholar 

  27. Qiu, J., Xing, Z., Zhu, Ch., Lu, K., He, J., Sun, Ya., and Yin, L., Centralized fusion based on interacting multiple model and adaptive Kalman filter for target tracking in underwater acoustic sensor networks, IEEE Access, 2019, vol. 7, pp. 25948–25958. https://doi.org/10.1109/ACCESS.2019.2899012

    Article  Google Scholar 

  28. Wen, C., Wang, Z., Liu, Q., and Alsaadi, F.E., Recursive distributed filtering for a class of state-saturated systems with fading measurements and quantization effects, IEEE Trans. Syst., Man, Cybern.: Syst., 2018, vol. 48, no. 6, pp. 930–941. https://doi.org/10.1109/TSMC.2016.2629464

    Article  Google Scholar 

  29. He, X., Johansson, K.H., and Fang, H., Distributed design of robust Kalman filters over corrupted channels, IEEE Trans. Signal Process., 2021, vol. 69, pp. 2422–2434. https://doi.org/10.1109/TSP.2021.3070779

    Article  MathSciNet  MATH  Google Scholar 

Download references