link.springer.com

POODLE: Tools Predicting Intrinsically Disordered Regions of Amino Acid Sequence

  • ️Wed Jan 01 2014
  • Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293: 321–331

    Article  CAS  PubMed  Google Scholar 

  • Dunker AK, Brown CJ, Lawson JD et al (2002) Intrinsic disorder and protein function. Biochemistry 41:6573–6582

    Article  CAS  PubMed  Google Scholar 

  • Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11:739–756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tompa P (2005) The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 579:3346–3354

    Article  CAS  PubMed  Google Scholar 

  • He B, Wang K, Liu Y et al (2009) Predicting intrinsic disorder in proteins: an overview. Cell Res 19:929–949

    Article  CAS  PubMed  Google Scholar 

  • Deng X, Eickholt J, Cheng J (2012) A comprehensive overview of computational protein disorder prediction methods. Mol Biosyst 8:114–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Longhi S, Receveur-Brechot V, Karlin D et al (2003) The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein. J Biol Chem 278:18638–18648

    Article  CAS  PubMed  Google Scholar 

  • Spinola-Amilibia M, Rivera J, Ortiz-Lombardia M et al (2011) The structure of BRMS1 nuclear export signal and SNX6 interacting region reveals a hexamer formed by antiparallel coiled coils. J Mol Biol 411:1114–1127

    Article  CAS  PubMed  Google Scholar 

  • Reingewertz TH, Shalev DE, Sukenik S et al (2011) Mechanism of the interaction between the intrinsically disordered C-terminus of the pro-apoptotic ARTS protein and the Bir3 domain of XIAP. PLoS One 6:e24655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mcdonald CB, Balke JE, Bhat V et al (2012) Multivalent binding and facilitated diffusion account for the formation of the Grb2-Sos1 signaling complex in a cooperative manner. Biochemistry 51:2122–2135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mcdonald CB, Bhat V, Mikles DC et al (2012) Bivalent binding drives the formation of the Grb2-Gab1 signaling complex in a noncooperative manner. FEBS J 279:2156–2173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khan H, Cino EA, Brickenden A et al (2013) Fuzzy complex formation between the intrinsically disordered prothymosin alpha and the Kelch domain of Keap1 involved in the oxidative stress response. J Mol Biol 425(6): 1011–1027

    Article  CAS  PubMed  Google Scholar 

  • Ward JJ, Sodhi JS, Mcguffin LJ et al (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337:635–645

    Article  CAS  PubMed  Google Scholar 

  • Motono C, Nakata J, Koike R et al (2011) SAHG, a comprehensive database of predicted structures of all human proteins. Nucleic Acids Res 39:D487–D493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Linding R, Russell RB, Neduva V et al (2003) GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31:3701–3708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dunker AK, Obradovic Z, Romero P et al (2000) Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 11:161–171

    CAS  PubMed  Google Scholar 

  • Shimizu K, Muraoka Y, Hirose S et al (2007) Predicting mostly disordered proteins by using structure-unknown protein data. BMC Bioinforma 8:78

    Article  Google Scholar 

  • Dunker AK, Silman I, Uversky VN et al (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18: 756–764

    Article  CAS  PubMed  Google Scholar 

  • Minezaki Y, Homma K, Kinjo AR et al (2006) Human transcription factors contain a high fraction of intrinsically disordered regions essential for transcriptional regulation. J Mol Biol 359:1137–1149

    Article  CAS  PubMed  Google Scholar 

  • Dunker AK, Cortese MS, Romero P et al (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272:5129–5148

    Article  CAS  PubMed  Google Scholar 

  • Dosztanyi Z, Chen J, Dunker AK et al (2006) Disorder and sequence repeats in hub proteins and their implications for network evolution. J Proteome Res 5:2985–2995

    Article  CAS  PubMed  Google Scholar 

  • Haynes C, Oldfield CJ, Ji F et al (2006) Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2:e100

    Article  PubMed Central  PubMed  Google Scholar 

  • Singh GP, Ganapathi M, Dash D (2007) Role of intrinsic disorder in transient interactions of hub proteins. Proteins 66:761–765

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41:415–427

    Article  CAS  PubMed  Google Scholar 

  • Linding R, Jensen LJ, Diella F et al (2003) Protein disorder prediction: implications for structural proteomics. Structure 11:1453–1459

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Ward JJ (2003) Prediction of disordered regions in proteins from position specific score matrices. Proteins 53(Suppl 6):573–578

    Article  CAS  PubMed  Google Scholar 

  • Prilusky J, Felder CE, Zeev-Ben-Mordehai T et al (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21:3435–3438

    Article  CAS  PubMed  Google Scholar 

  • Dosztanyi Z, Csizmok V, Tompa P et al (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347:827–839

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Hirose S, Noguchi T (2007) POODLE-S: web application for predicting protein disorder by using physicochemical features and reduced amino acid set of a position-specific scoring matrix. Bioinformatics 23: 2337–2338

    Article  CAS  PubMed  Google Scholar 

  • Hirose S, Shimizu K, Kanai S et al (2007) POODLE-L: a two-level SVM prediction system for reliably predicting long disordered regions. Bioinformatics 23:2046–2053

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Muraoka Y, Hirose S et al (2005) Feature selection based on physicochemical properties of redefined N-term region and C-term regions for predicting disorder. In: Proceedings of 2005 IEEE symposium on computational intelligence in bioinformatics and computational biology, pp 262–267

    Google Scholar 

  • Peng K, Radivojac P, Vucetic S et al (2006) Length-dependent prediction of protein intrinsic disorder. BMC Bioinforma 7:208

    Article  Google Scholar 

  • Ward JJ, Mcguffin LJ, Bryson K et al (2004) The DISOPRED server for the prediction of protein disorder. Bioinformatics 20:2138–2139

    Article  CAS  PubMed  Google Scholar 

  • Dosztanyi Z, Csizmok V, Tompa P et al (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21:3433–3434

    Article  CAS  PubMed  Google Scholar 

  • Yang ZR, Thomson R, Mcneil P et al (2005) RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21:3369–3376

    Article  CAS  PubMed  Google Scholar 

  • Ishida T, Kinoshita K (2007) PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 35: W460–W464

    Article  PubMed Central  PubMed  Google Scholar 

  • Hirose S, Shimizu K, Noguchi T (2010) POODLE-I: disordered region prediction by integrating POODLE series and structural information predictors based on a workflow approach. In Silico Biol 10:185–191

    PubMed  Google Scholar 

  • Xue B, Dunbrack RL, Williams RW et al (2010) PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 1804:996–1010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishida T, Kinoshita K (2008) Prediction of disordered regions in proteins based on the meta approach. Bioinformatics 24:1344–1348

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski LP, Bujnicki JM (2012) MetaDisorder: a meta-server for the prediction of intrinsic disorder in proteins. BMC Bioinforma 13:111

    Article  Google Scholar 

  • Bordoli L, Kiefer F, Schwede T (2007) Assessment of disorder predictions in CASP7. Proteins

    Google Scholar 

  • Noivirt-Brik O, Prilusky J, Sussman JL (2009) Assessment of disorder predictions in CASP8. Proteins 77(Suppl 9):210–216

    Article  CAS  PubMed  Google Scholar 

  • Monastyrskyy B, Fidelis K, Moult J et al (2011) Evaluation of disorder predictions in CASP9. Proteins 79(Suppl 10):107–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakharkar MK, Sakharkar KR, Chow VT (2009) Human genomic diversity, viral genomics and proteomics, as exemplified by human papillomaviruses and H5N1 influenza viruses. Hum Genomics 3:320–331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scotti C, Olivieri C, Boeri L et al (2011) Bioinformatic analysis of pathogenic missense mutations of activin receptor like kinase 1 ectodomain. PLoS One 6:e26431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morita M, Saito S, Ikeda K et al (2009) Structural bases of GM1 gangliosidosis and Morquio B disease. J Hum Genet 54: 510–515

    Article  CAS  PubMed  Google Scholar 

  • Mcguffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  CAS  PubMed  Google Scholar 

  • Cuff JA, Barton GJ (2000) Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40:502–511

    Article  CAS  PubMed  Google Scholar 

  • Adamczak R, Porollo A, Meller J (2005) Combining prediction of secondary structure and solvent accessibility in proteins. Proteins 59:467–475

    Article  PubMed  Google Scholar 

  • Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252:1162–1164

    Article  CAS  PubMed  Google Scholar 

  • Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248

    Article  PubMed Central  PubMed  Google Scholar 

  • Shimizu K, Toh H (2009) Interaction between intrinsically disordered proteins frequently occurs in a human protein-protein interaction network. J Mol Biol 392(5):1253–1265

    Article  CAS  PubMed  Google Scholar 

  • Das S, Mukhopadhyay D (2011) Intrinsically unstructured proteins and neurodegenerative diseases: conformational promiscuity at its best. IUBMB Life 63:478–488

    Article  CAS  PubMed  Google Scholar 

  • Manich G, Mercader C, Del Valle J et al (2011) Characterization of amyloid-beta granules in the hippocampus of SAMP8 mice. J Alzheimers Dis 25:535–546

    CAS  PubMed  Google Scholar 

  • Khan SH, Ahmad F, Ahmad N et al (2011) Protein-protein interactions: principles, techniques, and their potential role in new drug development. J Biomol Struct Dyn 28: 929–938

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Cao Z, Zhao L et al (2011) Novel strategies for drug discovery based on intrinsically disordered proteins (IDPs). Int J Mol Sci 12:3205–3219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu J, Li S, Dunker AK et al (2012) Molecular profiling: an essential technology enabling personalized medicine in breast cancer. Curr Drug Targets 13:541–554

    Article  CAS  PubMed  Google Scholar 

  • Patil A, Kinoshita K, Nakamura H (2010) Hub promiscuity in protein-protein interaction networks. Int J Mol Sci 11:1930–1943

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nilsson J, Grahn M, Wright AP (2011) Proteome-wide evidence for enhanced positive Darwinian selection within intrinsically disordered regions in proteins. Genome Biol 12:R65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nido GS, Mendez R, Pascual-Garcia A et al (2012) Protein disorder in the centrosome correlates with complexity in cell types number. Mol Biosyst 8:353–367

    Article  CAS  PubMed  Google Scholar