Pharmacological Interference with Protein-Protein Interactions Mediated by Coiled-Coil Motifs
Alber T (1992) Structure of the leucine zipper. Curr Opin Genet Dev 2:205–210
Baker KA, Dutch RE, Lamb RA, Jardetzky TS (1999) Structural basis for paramyxovirus-mediated membrane fusion. Mol Cell 3:309–319
Bennett MK (1995) SNAREs and the specificity of transport vesicle targeting. Curr Opin Cell Biol 7:581–586
Bezprozvanny I, Scheller RH, Tsien RW (1995) Functional impact of syntaxin on gating of N-type and Q-type calcium channels. Nature 378:623–626
Biou V, Yaremchuk A, Tukalo M, Cusack S (1994) The 2.9 Å crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNA(Ser). Science 263:1404–1410
Bullough PA, Hughson FM, Skehel JJ, Wiley DC (1994) Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371:37–43
Carr CM, Kim PS (1993) A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73:823–832
Chan DC, Fass D, Berger JM, Kim PS (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89:263–273
Chen J, Wharton SA, Weissenhorn W, Calder LJ, Hughson FM, Skehel JJ, Wiley DC (1995) A soluble domain of the membrane-anchoring chain of influenza virus hemagglutinin (HA2) folds in Escherichia coli into the low-pH-induced confirmation. Proc Natl Acad Sci USA 92:12205–12209
Chen J, Lee KH, Steinhauer DA, Stevens DJ, Skehel JJ, Wiley DC (1998) Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell 95:409–417
Chernomordik LV, Kozlov MM (2005) Membrane hemifusion: crossing a chasm in two leaps. Cell 123:375–382
Ciferri C, De Luca J, Monzani S, Ferrari KJ, Ristic D, Wyman C, Stark H, Kilmartin J, Salmon ED, Musacchio A (2005) Architecture of the human ndc80-hec1 complex, a critical constituent of the outer kinetochore. J Biol Chem 280:29088–29095
Cleveland DW, Mao Y, Sullivan KF (2003) Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112:407–421
Contegno F, Cioce M, Pelicci PG, Minucci S (2002) Targeting protein inactivation through an oligomerization chain reaction. Proc Natl Acad Sci USA 99:1865–1869
Conway JF, Parry DA (1990) Structural features in the heptad substructure and longer range repeats of two-stranded α-fibrous proteins. Int J Biol Macromol 12:328–334
Conway JF, Parry DA (1991) Three-stranded α-fibrous proteins: the heptad repeat and its implications for structure. Int J Biol Macromol 13:14–16
Crick FHC (1952) Is α-keratin a coiled coil? Nature 170:882–883
Crick FH (1953) The packing of α-helices: simple coiled coils. Acta Crystallogr 6:689–698
Cusack S, Berthet-Colominas C, Hartlein M, Nassar N, Leberman R (1990) A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 Å. Nature 347:249–255
Dwyer JJ, Wilson KL, Davison DK, Freel SA, Seedorff JE, Wring SA, Tvermoes NA, Matthews TJ, Greenberg ML, Delmedico MK (2007) Design of helical, oligomeric HIV-1 fusion inhibitor peptides with potent activity against enfuvirtide-resistant virus. Proc Natl Acad Sci USA 104:12772–12777
Ellenberger TE, Brandl CJ, Struhl K, Harrison, SC (1992) The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted r helices: crystal structure of the protein–DNA complex. Cell 71:1223–1237
Eron JJ, Gulick RM, Bartlett JA, Merigan T, Arduino R, Kilby JM, Yangco B, Diers A, Drobnes C, DeMasi R, Greenberg M, Melby T, Raskino C, Rusnak P, Zhang Y, Spence R Miralles GD (2004) Short-term safety and antiretroviral activity of T-1249, a second-generation fusion inhibitor of HIV. J Infect Dis 189:1075–1083
Fasshauer D, Sutton RB, Brünger AT, Jahn R (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci USA 95:15781–15786
Gillingham AK, Munro S (2003) Long coiled-coil proteins and membrane traffic. Biochim Biophys Acta 1641:71–85
Glover JN, Harrison SC (1995) Crystal structure of the heterodimeric bZIP transcription factor c-Fos–c-Jun bound to DNA. Nature 373:257–261
Goldenberg DM (2003) Advancing role of radiolabeled antibodies in the therapy of cancer. Cancer Immunol Immunother 52:281–296
Gonzalez L, Jr, Woolfson, DN, Alber T (1996) Buried polar residues and structural specificity in the GCN4 leucine zipper. Nat Struct Biol 3:1011–1018
Goodwin DA, Meares CF (2001) Advances in pretargeting biotechnology. Biotechnol Adv 19:435–450
Hanson PI, Heuser JE, Jahn R (1997) Neurotransmitter release–four years of SNARE complexes. Curr Opin Neurobiol 7:310–315
Harbury PB, Zhang T, Kim PS, Alber T (1993) A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262:1401–1407
Harbury PB, Kim PS, Alber T (1994) Crystal structure of an isoleucine-zipper trimer. Nature 371:80–83
Hinnebusch AG (1992) General and pathway-specific regulatory mechanisms controlling the synthesis of amino acid biosynthetic enzymes in Saccharomyces cerevisae. In: Broach JR, Jones EW, Pringle JR (eds) The molecular and cellular biology of the yeast Saccharomyces: gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 319–414
Hinnebusch AG, Natarajan K (2002) Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell 1:22–32
Hodges RS, Sodek J, Smillie LB, Jurasek L (1972) Tropomyosin: amino acid sequence and coiled coil structure. Cold Spring Harbor Symp Quant Biol 37:299–310
Hodges RS, Zhu BY, Zhou NE, Mant CT (1994) Reversed-phase liquid chromatography as a useful probe of hydrophobic interactions involved in protein folding and protein stability. J Chromatogr A 676: 3–15
Hurst HC (1994) Transcription factors 1: bZIP proteins. Protein Profile 1(2):123–168
Hurst HC (1995) Transcription factors 1: bZIP proteins. Protein Profile 2(2):101–168
Ito T, Suzuki Y, Takada A, Kawamoto A, Otsuki K, Masuda H, Yamada M, Suzuki T, Kida H, Kawaoka Y (1997) Differences in sialic acid–galactose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection. J Virol 71:3357–3362
Jahn R, Niemann H (1994) Molecular mechanisms of clostridial neurotoxins. Ann NY Acad Sci 733:245–255
Jiang S, Lin K, Strick N, Neurath, AR (1994) HIV-1 inhibition by a peptide. Nature 365:113
Jiang S, Lu H, Liu S, Zhao Q, He Y, Debnath AK (2004) N-substituted pyrrole derivatives as novel human immunodeficiency virus type 1 entry inhibitors that interfere with the gp41 six-helix bundle formation and block virus fusion. Antimicrob Agents Chemother 48:4349–4359
Jin BS, Lee WK, Ahn K, Lee MK, Yu YG (2005) High-throughput screening method of inhibitors that block the interaction between two helical regions of HIV-1 gp41. Biomol Screen 10:13–19
Keller W, König P, Richmond TJ (1995) Crystal structure of a bZIP/DNA complex at 2.2 Å: determinants of DNA specific recognition. J Mol Biol 254:657–667
Knappenberger JA, Smith JE, Thorpe SH, Zitzewitz JA, Matthews CR (2002) A buried polar residue in the hydrophobic interface of the coiled coil peptide, GCN4–p1, plays a thermodynamic, not a kinetic role in folding. J Mol Biol 321:1–6
König P, Richmond TJ (1993) The X-ray structure of the GCN4-bZIP bound to ATF/CREB site DNA shows the complex depends on DNA flexibility. J Mol Biol 233:139–154
Krylov D, Mikhailenko I, Vinson C (1994) A thermodynamic scale for leucine zipper stability and dimerization specificity: e and g interhelical interactions. EMBO J 13:2849–2861
Langosch D, Heringa J (1998) Interaction of transmembrane helices by a knobs-into-holes packing characteristic of soluble coiled coils. Proteins 31:150–159
Lavigne P, Sonnichsen FD, Kay CM, Hodges RS, Lumb KJ, Kim PS (1996) Interhelical salt bridges, coiled coil stability, and specificity of dimerization. Science 271:1136–1138
Li F, Pincet F, Perez E, Eng WS, Melia TJ, Rothman JE, Tareste D (2007) Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat Struct Mol Biol 14:890–896
Lim EC, Seet RC (2007) Botulinum toxin, Quo Vadis? Med Hypotheses 69:718–723
Liu J, Rost B (2001) Comparing function and structure between entire proteomes. Protein Sci 10:1970–1979
Lumb KJ, Kim PS (1995) Measurement of interhelical electrostatic interactions in the GCN4 leucine zipper. Science 268:436–439
Maiato H, DeLuca J, Salmon ED, Earnshaw WC (2004) The dynamic kinetochore–microtubule interface. J Cell Sci 117:5461–5477
Martínez-Carbonero L (2004) Discontinuation of the clinical development of fusion inhibitor T1249. AIDS Rev 6:61
McLachlan AD, Stewart M (1975) Tropomyosin coiled coil interactions: evidence for an unstaggered structure. J Mol Biol 98:293–304
Newman JR, Keating AE (2003) Comprehensive identification of human bZIP interactions with coiled coil arrays. Science 300:2097–2101
O’Shea EK, Rutkowski R, Kim PS (1989) Preferential heterodimer formation by isolated leucine zippers from fos and jun. Science 245:646–648
O’Shea EK, Klemm JD, Kim PS, Alber T (1991) X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254:539–544
O’Shea EK, Rutkowski R, Kim PS (1992) Mechanism of specificity in the Fos-Jun oncoprotein heterodimer. Cell 68:699–708
Otaka A, Nakamura M, Nameki D, Kodama E, Uchiyama S, Nakamura S, Nakano H, Tamamura H, Kobayashi Y, Matsuoka M, Fujii N (2002) Remodeling of gp41–C34 peptide leads to highly effective inhibitors of the fusion of HIV-1 with target cells. Angew Chem Int Ed 41:2937–2940
Petka WA, Harden J L, McGrath KP, Wirtz D, Tirrell DA (1998) Reversible hydrogels from self-assembling artificial proteins. Science 281:389–392
Portwich M, Keller S, Strauss HM, Mahrenholz CC, Kramer A, Kretzschmar I, Volkmer R (2007). A network of coiled-coil associations derived from synthetic GCN4 leucine-zipper arrays. Angew Chem Int Ed 46:1654–1657
Potekhin SA, Medvedkin VN, Kashparov IA, Venyaminov SY (1994) Synthesis and properties of the peptide corresponding to the mutant form of the leucine zipper of the transcriptional activator GCN4 from yeast. Protein Eng 7:1097–1101
Schibli DJ, Weissenhorn W (2004) class I and class II viral fusion protein structures reveal similar principles in membrane fusion. Mol Membr Biol 21:361–371
Schuette CG, Hatsuzawa K, Margittai M, Stein A, Riedel D, Küster P, König M, Seidel C, Jahn R (2004) Determinants of liposome fusion mediated by synaptic SNARE proteins. Proc Natl Acad Sci USA 101:2858–2863
Sieber JJ, Willig KI, Heintzmann R, Hell SW, Lang T (2006) The SNARE motif is essential for the formation of syntaxin clusters in the plasma membrane. Biophys J 90:2843–2851
Sieber JJ, Willig KI, Kutzner C, Gerding-Reimers C, Harke B, Donnert G, Rammner B, Eggeling C, Hell SW, Grubmüller H, Lang T (2007) Anatomy and dynamics of a supramolecular membrane protein cluster. Science 317:1072–1076
Skehel JJ, Wiley DJ (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569
Sodek J, Hodges RS, Smillie LB, Jurasek L (1972) Amino-acid sequence of rabbit skeletal tropomyosin and its coiled-coil structure. Proc Natl Acad Sci USA 69:3800–3804
Söllner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318–324
Stein A, Radhakrishnan A, Riedel D, Fasshauer D, Jahn R (2007) Synaptotagmin activates membrane fusion through a Ca2+-dependent trans interaction with phospholipids. Nat Struct Mol Biol 14:904–911
Steinert PM (1993) Structure, function, and dynamics of keratin intermediate filaments. J Invest Dermatol 100:729–734
Sutton RB, Fasshauer D, Jahn R, Brünger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395:347–353
Tan K, Liu, J, Wang J-H, Shen S, Lu M (1997) Atomic structure of a thermostable subdomain of HIV-1 gp41. Proc Natl Acad Sci USA 94:12303–12308
Vinson CR, Sigler PB, McKnight SL (1989) Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246:911–916
Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Söllner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772
Wei RR, Sorger PK, Harrison SC (2005) Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc Natl Acad Sci USA 102:5363–5367
Wei RR, Schnell JR, Larsen NA, Sorger PK, Chou JJ, Harrison SC (2006) Structure of a central component of the yeast kinetochore: the Spc24p/Spc25p globular domain. Structure 14:1003–1009
Wei RR, Al-Bassam J, Harrison SC (2007) The Ndc80/HEC1 complex is a contact point for kinetochore–microtubule attachment. Nat Struct Mol Biol 14:54–59
Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC (1997) Atomic structure of the ectodomain from HIV-1 gp41. Nature 387:426–430
Weissenhorn W, Hinz A, Gaudin Y (2007) Virus membrane fusion. FEBS Lett 581:2150–2155
Wharton SA, Skehel JJ, Wiley DC (1986) Studies of influenza haemagglutinin-mediated membrane fusion. Virology 149:27–35
Wigge PA, Kilmartin JV (2001) The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J Cell Biol 152:349–360
Wild C, Oas T, McDanal CB, Bolognesi D, Matthews T (1992) A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. Proc Natl Acad Sci USA 89:10537–10541
Wild C, Shugars DC, Greenwell TK, McDanal CB, Matthews TJ (1994) Peptides corresponding to a predictive α-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci USA 91:9770–9774
Wilson IA, Skehel JJ, Wiley DC (1981) Structure of the haemeagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289:366–373