link.springer.com

Koch’s postulates and infectious proteins - Acta Neuropathologica

  • ️Jucker, Mathias
  • ️Tue May 16 2006
  • Aguzzi A, Polymenidou M (2004) Mammalian prion biology: one century of evolving concepts. Cell 116:313–327

    Article  PubMed  CAS  Google Scholar 

  • Brock TD (1999) Robert Koch: a life in medicine and bacteriology. American Society of Microbiology Press, Washington

    Google Scholar 

  • Carrell RW, Lomas DA (2002) Alpha1-antitrypsin deficiency—a model for conformational diseases. N Engl J Med 346:45–53

    Article  PubMed  CAS  Google Scholar 

  • Castilla J, Saa P, Hetz C, Soto C (2005) In vitro generation of infectious scrapie prions. Cell 121:195–206

    Article  PubMed  CAS  Google Scholar 

  • Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298

    Article  PubMed  CAS  Google Scholar 

  • Chesebro B (2003) Introduction to the transmissible spongiform encephalopathies or prion diseases. Br Med Bull 66:1–20

    Article  PubMed  CAS  Google Scholar 

  • Chesebro B, Trifilo M, Race R, Meade-White K, Teng C, LaCasse R, Raymond L, Favara C, Baron G, Priola S, Caughey B, Masliah E, Oldstone M (2005) Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308:1420–1421

    Article  CAS  Google Scholar 

  • Chien P, Weissman JS, DePace AH (2004) Emerging principles of conformation-based prion inheritance. Annu Rev Biochem 73:617–656

    Article  PubMed  CAS  Google Scholar 

  • Dobson CM (2002) Getting out of shape. Nature 418:729–730

    Article  PubMed  CAS  Google Scholar 

  • Dobson CM (2005) Structural biology: prying into prions. Nature 435:747–749

    Article  PubMed  CAS  Google Scholar 

  • Dzwolak W, Grudzielanek S, Smirnovas V, Ravindra R, Nicolini C, Jansen R, Loksztejn A, Porowski S, Winter R (2005) Ethanol-perturbed amyloidogenic self-assembly of insulin: looking for origins of amyloid strains. Biochemistry 44:8948–8958

    Article  PubMed  CAS  Google Scholar 

  • Evans AS (1991) Causation and disease: effect of technology on postulates of causation. Yale J Biol Med 64:513–528

    PubMed  CAS  Google Scholar 

  • Evans AS (1976) Causation and disease: the Henle-Koch postulates revisited. Yale J Biol Med 49:175–195

    PubMed  CAS  Google Scholar 

  • Falkow S (2004) Molecular Koch’s postulates applied to bacterial pathogenicity—a personal recollection 15 years later. Nat Rev Microbiol 2:67–72

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Korenaga T, Fu L, Xing Y, Guo Z, Matsushita T, Hosokawa M, Naiki H, Baba S, Kawata Y, Ikeda S, Ishihara T, Mori M, Higuchi K (2004) Induction of AApoAII amyloidosis by various heterogeneous amyloid fibrils. FEBS Lett 563:179–184

    Article  PubMed  CAS  Google Scholar 

  • Gajdusek DC (1994) Spontaneous generation of infectious nucleating amyloids in the transmissible and nontransmissible cerebral amyloidoses. Mol Neurobiol 8:1–13

    Article  PubMed  CAS  Google Scholar 

  • Hardy J (2005) Expression of normal sequence pathogenic proteins for neurodegeneration contributes to disease risk: “Permissive templating” as a general disease mechanism of neurodegeneration. Biochem Soc Trans 33:578–581

    Article  PubMed  CAS  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  PubMed  CAS  Google Scholar 

  • Heikenwalder M, Zeller N, Seeger H, Prinz M, Klohn PC, Schwarz P, Ruddle NH, Weissmann C, Aguzzi A (2005) Chronic lymphocytic inflammation specifies the organ tropism of prions. Science 307:1107–1110

    Article  PubMed  CAS  Google Scholar 

  • Jones EM, Surewicz WK (2005) Fibril conformation as the basis of species- and strain-dependent seeding specificity of mammalian prion amyloids. Cell 121:63–72

    Article  PubMed  CAS  Google Scholar 

  • Jones EM, Surewicz K, Surewicz WK (2006) Role of N-terminal familial mutations in prion protein fibrillization and prion amyloid propagation in vitro. J Biol Chem 281:8190–8196

    Article  PubMed  CAS  Google Scholar 

  • Kakizuka A (1998) Protein precipitation: a common etiology in neurodegenerative disorders? Trends Genet 14:396–402

    Article  PubMed  CAS  Google Scholar 

  • Krishnan R, Lindquist SL (2005) Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435:765–772

    Article  PubMed  CAS  Google Scholar 

  • Legname G, Baskakov IV, Nguyen HO, Riesner D, Cohen FE, DeArmond SJ, Prusiner SB (2004) Synthetic mammalian prions. Science 305:673–676

    Article  PubMed  CAS  Google Scholar 

  • Legname G, Nguyen HO, Baskakov IV, Cohen FE, DeArmond SJ, Prusiner SB (2005) Strain-specified characteristics of mouse synthetic prions. Proc Natl Acad Sci USA 102:2168–2173

    Article  PubMed  CAS  Google Scholar 

  • Loeffler F (1884) Untersuchungen über die Bedeutung der Mikroorganismen für die Entstehung der Diptherie beim Menschen, bei der Taube und beim Kalbe. Mitth. a.d. kaiserl. Gesundheitsampte Ii, pp 421–499

  • Lundmark K, Westermark GT, Olsen A, Westermark P (2005) Protein fibrils in nature can enhance amyloid protein A amyloidosis in mice: cross-seeding as a disease mechanism. Proc Natl Acad Sci USA 102:6098–6102

    Article  PubMed  CAS  Google Scholar 

  • Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435:773–778

    Article  PubMed  CAS  Google Scholar 

  • O’Nuallain B, Williams AD, Westermark P, Wetzel R (2004) Seeding specificity in amyloid growth induced by heterologous fibrils. J Biol Chem 279:17490–17490

    Article  PubMed  CAS  Google Scholar 

  • Petkova AT, Leapman RD, Guo Z, Yau WM, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. Science 307:262–265

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB (1995) The prion diseases. Sci Am 272:48–51

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB (2001) Shattuck lecture—neurodegenerative diseases and prions. N Engl J Med 344:1516–1526

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB, Safar J, Cohen FE, DeArmond SJ (1999) The prion diseases. In: Terry RD, Katzman R, Bick KL, Sisodia SS (eds) Alzheimer disease. Lippincott Williams and Wilkins, Philadelphia, pp 161–179

    Google Scholar 

  • Ritter C, Maddelein ML, Siemer AB, Luhrs T, Ernst M, Meier BH, Saupe SJ, Riek R (2005) Correlation of structural elements and infectivity of the HET-s prion. Nature 435:844–848

    Article  PubMed  CAS  Google Scholar 

  • Sigurdsson EM, Wisniewski T, Frangione B (2002) Infectivity of amyloid diseases. Trends Mol Med 8:411–413

    Article  PubMed  CAS  Google Scholar 

  • Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, Caughey B (2005) The most infectious prion protein particles. Nature 437:257–261

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Chien P, Yonekura K, Weissman JS (2005) Mechanism of cross-species prion transmission: an infectious conformation compatible with two highly divergent yeast prion proteins. Cell 121:49–62

    Article  PubMed  CAS  Google Scholar 

  • Unterberger U, Voigtlander T, Budka H (2005) Pathogenesis of prion diseases. Acta Neuropath 109:32–48

    Article  PubMed  CAS  Google Scholar 

  • Van Everbroeck B, Pals P, Martin JJ, Cras P (2002) Transmissible spongiform encephalopathies: the story of a pathogenic protein. Peptides 23:1351–1359

    Article  PubMed  Google Scholar 

  • Walker LC, LeVine H (2000) The cerebral proteopathies: neurodegenerative disorders of protein conformation and assembly. Mol Neurobiol 21:83–95

    Article  PubMed  CAS  Google Scholar 

  • Walker LC, LeVine H III (2002) Proteopathy: the next therapeutic frontier? Curr Opin Investig Drugs 3:782–787

    PubMed  CAS  Google Scholar 

  • Walker LC, LeVine H, Mattson MP, Jucker M (2006) Inducible proteopathies. TINS (in press)

  • Weissman C (2004) The state of the prion. Nat Rev Microbiol 2:861–871

    Article  CAS  Google Scholar 

  • Weissmann C (2005) Birth of a prion: spontaneous generation revisited. Cell 122:165–168

    Article  PubMed  CAS  Google Scholar 

  • Xing Y, Nakamura A, Korenaga T, Guo Z, Yao J, Fu X, Matsushita T, Kogishi K, Hosokawa M, Kametani F, Mori M, Higuchi K (2002) Induction of protein conformational change in mouse senile amyloidosis. J Biol Chem 277:164–169

    Article  Google Scholar 

  • Yamaguchi K, Takahashi S, Kawai T, Naiki H, Goto Y (2005) Seeding-dependent propagation and maturation of amyloid fibril conformation. J Mol Biol 352:952–960

    Article  PubMed  CAS  Google Scholar 

  • Zou WQ, Gambetti P (2005) From microbes to prions: the final proof of the prion hypothesis. Cell 121:155–157

    Article  PubMed  CAS  Google Scholar