link.springer.com

Chromosome painting shows that skunks (Mephitidae, Carnivora) have highly rearranged karyotypes - Chromosome Research

  • ️Stanyon, R.
  • ️Tue Nov 25 2008
  • Arnason U (1977) The relationship between the four principal pinniped karyotypes. Hereditas 87(2): 227–242.

    PubMed  CAS  Google Scholar 

  • Arnason U (1981) Localization of nucleolar organizing regions in pinniped karyotypes. Hereditas 94(1): 29–34.

    PubMed  CAS  Google Scholar 

  • Arnason U, Gullberg A, Janke A, Kullberg M (2007) Mitogenomic analyses of caniform relationships. Mol Phylogenet Evol 45(3): 863–874.

    Article  PubMed  CAS  Google Scholar 

  • Benirschke K, Low RJ (1966) Chromosome studies on four carnivores. Mammal Chrom Newsl 21: 148.

    Google Scholar 

  • Breen M, Thomas R, Binns MM, Carter NP, Langford CF (1999) Reciprocal chromosome painting reveals detailed regions of conserved synteny between the karyotypes of the domestic dog (Canis familiaris) and human. Genomics 61: 145–155.

    Article  PubMed  CAS  Google Scholar 

  • Bryant HN, Russel AP, Fitch WD (1993) Phylogenetic relationships within the extant Mustelidae (Carnivora): appraisal of the cladistic status of the Simpsonian subfamilies. Zool J Linn Soc 108: 301–334.

    Article  Google Scholar 

  • Carter NP, Ferguson-Smith ME, Affara NA, Briggs H, Ferguson-Smith MA (1990) Study of X chromosome abnormality in XX males using bivariate flow karyotype analysis and flow sorted dot blots. Cytometry 11(1): 202–207.

    Article  PubMed  CAS  Google Scholar 

  • Cavagna P, Menotti A, Stanyon R (2000) Genomic homology of the domestic ferret with cats and humans. Mamm Genome 11: 866–870.

    Article  PubMed  CAS  Google Scholar 

  • Dobigny G, Ducroz JF, Robinson TJ, Volobuev V (2004) Cytogenetics and Cladistics. Syst Biol 53(3): 470–484.

    Article  PubMed  Google Scholar 

  • Dragoo JW, Honeycutt RL (1997) Systematics of mustelid-like carnivores. J Mammal 78(2): 426–443.

    Article  Google Scholar 

  • Dragoo JW, Bradley RD, Honeycutt RL, Templeton JW (1993) Phylogenetic relationships among the skunks: a molecular perspective. J Mamm Evol 1: 255–267.

    Article  Google Scholar 

  • Dragoo JW, Honeycutt RL, Schmidly DJ (2003) Taxonomic status of white-backed hog-nosed skunks, genus Conepatus (Carnivora: Mephitidae). J Mammal 84: 159–176.

    Article  Google Scholar 

  • Dragoo JW, Matthes D, Aragon A, Hass CC, Yates TL (2004) Identification of skunk species submitted for rabies testing in the desert southwest. J Wildlife Dis 40: 371–376.

    CAS  Google Scholar 

  • Flynn JJ, Nedbal MA (1998) Phylogeny of the Carnivora (Mammalia): congruence vs incompatibility among multiple data sets. Mol Phylogenet Evol 9(3): 414–426.

    Article  PubMed  CAS  Google Scholar 

  • Flynn JJ, Nedbal MA, Dragoo JW, Honneycutt RL (2000) Whence the red panda? Mol Phylogenet Evol 17(2): 190–199.

    Article  PubMed  CAS  Google Scholar 

  • Flynn JJ, Finarelli JA, Zehr S, Hsu J, Nedbal MA (2005) Molecular phylogeny of the Carnivora (Mammalia): assessing the impact of increased sampling on resolving enigmatic relationships. Syst Biol 54(2): 317–337.

    Article  PubMed  Google Scholar 

  • Fredga K (1966) Chromosome studies on six species of Mustelidae and one of Procyonidae. Mamm Chromosomes Newsl 21: 145.

    Google Scholar 

  • Fredga K (1967) Comparative chromosome studies of the family Mustilidae (Carnivora, Mammalia). Hereditas 57: 295.

    PubMed  CAS  Google Scholar 

  • Frönicke L, Müller-Navia J, Romanakis K, Scherthan H (1997) Zoo-FISH maps of the harbor seal (Phoca vitulina) and the putative ancestral carnivore karyotype. Chromosoma 106: 108–113.

    Article  PubMed  Google Scholar 

  • Frönicke L, Wienberg J, Stone G, Adams L, Stanyon R (2003) Towards the delineation of the ancestral eutherian genome organization: comparative genome maps of human and the African elephant (Loxodonta africana) generated by chromosome painting. Proc R Soc Lond B 270: 1331–1340.

    Article  Google Scholar 

  • Fulton TL, Strobeck C (2006) Molecular phylogeny of the Arctoidea (Carnivora): effect of missing data on supertree and supermatrix analyses of multiple gene data sets. Mol Phylogenet Evol 41: 165–181.

    Article  PubMed  CAS  Google Scholar 

  • Genest FB, Morisset P, Patenaud RP (1986) Caryotype de la mouffette rayee, Mephitis mephitis. Genet Sel Evol 18(2): 111–112.

    Article  Google Scholar 

  • Graphodatsky AS, Perelman PL, Sokolovskaya NV, Beklemisheva VR, Serdukova NA, Dobigny G, O’Brien SJ, Ferguson-Smith MA, Yang F (2008) Phylogenomics of the dog and fox family (Canidae, Carnivora) revealed by chromosome painting. Chromosome Res 16(1): 129–143.

    Article  PubMed  CAS  Google Scholar 

  • Graphodatsky A, Sharshov A, Ternovsky D, Ternovskaya Yu (1989) Comparative cytogenetics of Mustelidae (Carnivora). Zool Zh 68(12): 96–106.

    Google Scholar 

  • Graphodatsky AS, Yang F, O’Brien PC et al. (2000a) A comparative chromosome map of the Arctic fox, red fox and dog defined by chromosome painting and high resolution G-banding. Chromosome Res 8: 253–263.

    Article  CAS  Google Scholar 

  • Graphodatsky AS, Yang F, Serdukova N, Perelman P, Zhdanova N, Ferguson-Smith MA (2000b) Dog chromosome-specific paints reveal evolutionary inter- and intrachromosomal rearrangements in the American mink and human. Cytogenet Cell Genet 90: 275–278.

    Article  CAS  Google Scholar 

  • Graphodatsky AS, Yang F, O’Brien PCM et al. (2001) Phylogenetic implications of the 38 putative ancestral chromosome segments for four canid species. Cytogenet Cell Genet 92: 243–247.

    Article  PubMed  CAS  Google Scholar 

  • Graphodatsky AS, Yang F, Perelman P et al. (2002) Comparative molecular cytogenetic studies in the order Carnivora: mapping chromosomal rearrangements onto the phylogenetic tree. Cytogenet Genome Res 96: 137–145.

    Article  PubMed  CAS  Google Scholar 

  • Hameister H, Klett C, Bruch J, Dixkens C, Vogel W, Christensen K (1997) Zoo-FISH analysis: the American mink (Mustela vison) closely resembles the cat karyotype. Chromosome Res 5: 5–11.

    Article  PubMed  CAS  Google Scholar 

  • Howell WM, Black DA (1980) Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36: 1014–1015.

    Article  PubMed  CAS  Google Scholar 

  • Hsu TC, Arrighi FE (1966) Mammal Chromosomes Newsl 21: 155–159.

    Google Scholar 

  • Hsu TC, Arrighi FE (1971) Distribution of constitutive heterochromatin in mammalian chromosomes. Chromosoma 34: 243–253.

    PubMed  CAS  Google Scholar 

  • Hsu TC, Benirschke K (1967) Atlas of Mammalian Chromosomes, vol 1. Berlin, Heidelberg, New York: Springer Verlag.

    Google Scholar 

  • Hsu TC, Mead RA (1969) Mechanisms of chromosomal changes in mammalian speciation. In: Benirschke K, ed. Comparative Mammalian Cytogenetics New-York: Springer-Verlag, pp. 8–17. http://www.bionet.nsc.ru/chromosomes/.

  • Hunt RM Jr (1974) The auditory bulla in Carnivora: an anatomical basis for reappraisal of carnivore evolution. J Morphol 143: 21–76.

    Article  PubMed  Google Scholar 

  • Koepfli KP, Deere KA, Slater GJ et al. (2008) Multigene phylogeny of the Mustelidae: resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation. BMC Biol 6: 10.

    Article  PubMed  Google Scholar 

  • Ledje C, Arnason U (1996a) Phylogenetic analyses of complete cytochrome b genes of the order Carnivora with particular emphasis on the Caniformia. J Mol Evol 42: 135–144.

    Article  CAS  Google Scholar 

  • Ledje C, Arnason U (1996b) Phylogenetic relationships within caniform carnivores based on analyses of the mitochondrial 12S rRNA gene. J Mol Evol 43: 641–649.

    Article  CAS  Google Scholar 

  • Lee MR, Modi WS (1983) Chromosomes of Spilogale pigmae and S. putorius leucoparia. J Mammal 64(3): 493–495.

    Article  Google Scholar 

  • Maden BE, Dent CL, Farrell TE, Garde J, McCallum FS, Wakeman JA (1987) Clones of human ribosomal DNA containing the complete 18 S-rRNA and 28 S-rRNA genes. Characterization, a detailed map of the human ribosomal transcription unit and diversity among clones. Biochem J 246(2): 519–527.

    PubMed  CAS  Google Scholar 

  • Mao X, Nie W, Wang J, Su W, Feng Q, Wang Y, Dobigny G, Yang F (2008) Comparative cytogenetics of bats (Chiroptera): the prevalence of Robertsonian translocations limits the power of chromosomal characters in resolving interfamily phylogenetic relationships. Chromosome Res 16(1): 155–170.

    Article  PubMed  CAS  Google Scholar 

  • Murphy WJ, Stanyon R, O’Brien SJ (2001) Evolution of mammalian genome organization inferred from comparative gene mapping. Genome Biol 2(6): 1–8.

    Article  Google Scholar 

  • Nash WG, Wienberg J, Ferguson-Smith MA, Menninger JC, O’Brien SJ (1998) Comparative genomics: tracking chromosome evolution in the family Ursidae using reciprocal chromosome painting. Cytogenet Cell Genet 83: 182–192.

    Article  PubMed  CAS  Google Scholar 

  • Nash WG, Menninger JC, Wienberg J, Padilla-Nash HM, O’Brien SJ (2001) The pattern of phylogenomic evolution of the Canidae. Cytogenet Cell Genet 95: 210–224.

    Article  PubMed  CAS  Google Scholar 

  • Nash WG, Menninger JC, Padilla-Nash HM, Stone G, Perelman PL, O'Brien SJ (2008) The ancestral carnivore karyotype (2n = 38) lives today in ringtails. J Hered 99(3): 241–253.

    Article  PubMed  Google Scholar 

  • Nie W, Wang J, O’Brien PCM et al. (2002) The genome phylogeny of domestic cat, red panda and five mustelid species revealed by comparative chromosome painting and G-banding. Chromosome Res 10: 209–222.

    Article  PubMed  CAS  Google Scholar 

  • Nie W, Wang J, Perelman P, Graphodatsky AS, Yang F (2003) Comparative chromosome painting defines the karyotypic relationships among the domestic dog, Chinese raccoon dog and Japanese raccoon dog. Chromosome Res 11(8): 735–740.

    Article  PubMed  CAS  Google Scholar 

  • Nowak RM (1991) Walker’s Mammals of the World, 5th edn, vol. 2. Baltimore and London: The Johns Hopkins University Press.

    Google Scholar 

  • Owen JG, Baker RJ, Williams SL (1996) Karyotypic variation in spotted skunks (Carnivore: Mustelidae: Spilogale) from Texas, Mexico and El Salvador. Texas J Sci 48(2): 119–122.

    Google Scholar 

  • Pathak S, Wurster-Hill DH (1977) The distribution of constitutive heterochromatin in carnivores. Cytogenet Cell Genet 18: 245–254.

    Article  PubMed  CAS  Google Scholar 

  • Perelman PL, Graphodatsky AS, Serdukova NA et al. (2005) Karyotypic conservatism in the suborder Feliformia (Order Carnivora). Cytogenet Genome Res 108(4): 348–354.

    Article  PubMed  CAS  Google Scholar 

  • Petter G (1971) Origine, phylogenie et systematique des blaireaux. Mammalia 35: 567–597.

    Article  Google Scholar 

  • Pocock RI (1921) On the external characters and classification of the Mustelidae: Proc Zool Soc Lond 803–837.

  • Radinsky L (1973) Are stink badgers skunks? Implications of neuroanatomy for mustelid phylogeny. J Mammal 54: 585–593.

    Article  Google Scholar 

  • Rens W, O’Brien PC, Fairclough H, Harman L, Graves JA, Ferguson-Smith MA (2003) Reversal and convergence in marsupial chromosome evolution. Cytogenet Genome Res 102(1–4): 282–290.

    Article  PubMed  CAS  Google Scholar 

  • Rens W, Fu B, O’Brien PC, Ferguson-Smith M (2006) Cross-species chromosome painting. Nat Protoc 1(2): 783–790.

    Article  PubMed  CAS  Google Scholar 

  • Sato JJ, Hosoda T, Wolsan M, Suzuki H (2004) Molecular phylogeny of arctoids (Mammalia: Carnivora) with emphasis on phylogenetic and taxonomic positions of the ferret-badgers and skunks. Zool Sci 21: 111–118.

    Article  PubMed  CAS  Google Scholar 

  • Sato JJ, Wolsan M, Suzuki H et al. (2006) Evidence from nuclear DNA sequences sheds light on the phylogenetic relationships of pinnipedia: single origin with affinity to musteloidea. Zool Sci 23(2): 125–146.

    Article  PubMed  CAS  Google Scholar 

  • Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 30;2(7731): 971–972.

    Article  Google Scholar 

  • Simpson GG (1945) The principles of classification and classification of mammals. Bull Am Museum Nat Hist 85: 1–350.

    Google Scholar 

  • Stanyon R, Galleni L (1991) A rapid fibroblast culture method for mammalian chromosome. Boll Zool 58: 81–83.

    Google Scholar 

  • Stanyon R, Bigoni F, Wienberg J, Hadidian J (1993) A standardized G-banded karyotype for the raccoon (Procyon lotor) compared with the domestic cat. Boll Zool 60: 41–45.

    Google Scholar 

  • Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75: 304–306.

    Article  PubMed  CAS  Google Scholar 

  • Telenius H, Pelmear AH, Tunnacliffe A et al. (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4: 226–257.

    Article  Google Scholar 

  • Tian Y, Nie WH, Wang JH, Yang YF, Yang FT (2002) Comparative chromosome painting shows the red panda (Ailurus fulgens) has a highly conserved karyotype. Yi Chuan Xue Bao 29(2): 124–127.

    PubMed  CAS  Google Scholar 

  • Tian Y, Nie W, Wang J, Ferguson-Smith MA, Yang F (2004) Chromosome evolution in bears: reconstructing phylogenetic relationships by cross-species chromosome painting. Chromosome Res 12(1): 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Verts BJ, Carraway LN, Kinlaw A (2001) Spilogale gracilis. Mammalian Species 674: 1–10. Retrieved from http://www.bioone.org/perlserv/?request=get-archive&issn=1545-1410 11/10/2008.

    Google Scholar 

  • Vrana PB, Milinkovitch MC, Powell JR, Wheeler WC (1994) Higher level relationships of the arctoid Carnivora based on sequence data and ‘total evidence’. Mol Phylogenet Evol 3: 47–58.

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Whistler DP, Takeuchi GT (2005) A new basal skunk Martinogale (Carnivora, Mephitinae) from late Miocene dove spring formation, California and origin of new world Mephitines. J Vertebrate Paleontol 25(4): 936–949.

    Article  Google Scholar 

  • Wienberg J, Stanyon R, Nash WG et al. (1997) Conservation of human vs. feline genome organization revealed by reciprocal chromosome painting. Cytogenet Cell Genet 77(3–4): 211–217.

    Article  PubMed  CAS  Google Scholar 

  • Woodward RL (1994) The generic relationships of skunks (Mustelidae, Mephitinae) based on chromosome morphology and banding patterns. MS thesis. Angelo State University, San Angelo, Texas.

  • Wozencraft WC (1989) The phylogeny of the recent Carnivora. In: Wilson DE, Reeder DM, eds. Carnivore Behaviour, Ecology, and Evolution. Washington, DC: Smithsonian Institution Press, pp. 279–348.

    Google Scholar 

  • Wozencraft WC (1993) Order Carnivora. In: Wilson DE, Reeder DM, eds. Mammal Species of the World: a Taxonomic and Geographic Reference. Washington, DC: Smithsonian Institution Press, pp. 495–535.

    Google Scholar 

  • Wozencraft WC (2005) Order Carnivora. In: Wilson DE, Reeder DM, eds. Mammal Species of the World. Baltimore and London: Johns Hopkins University Press, pp. 532–628.

    Google Scholar 

  • Wurster-Hill DH (1973) Chromosomes of eight species from five families of Carnivora. J Mammal 54(3): 753–760.

    Article  PubMed  CAS  Google Scholar 

  • Wurster DH, Benirschke K (1968) Comparative cytogenetic studies if the order Carnivora. Chromosoma 24: 336–382.

    Article  PubMed  CAS  Google Scholar 

  • Wurster-Hill DH, Gray CW (1975) The interrelationship of chromosome banding patterns in procyonids, viverrids, and felids. Cytogenet Cell Genet 15: 306–331.

    Article  PubMed  CAS  Google Scholar 

  • Wyss AR, Flynn JJ (1993) A phylogenetic analysis and definition of the Carnivora. In: Szalay F, Novacek M, McKenna M eds., Mammal Phylogeny: Placentals. New York: Springer-Verlag, pp. 32–52.

  • Yang F, Graphodatsky AS (2004) Integrated comparative genome maps and their implications for karyotype evolution of carnivores. In: Schmid M, Nanda I, eds. Chromosomes Today, pp. 215–224.

  • Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103(9): 642–652.

    Article  PubMed  CAS  Google Scholar 

  • Yang F, O’Brien PC, Milne BS et al. (1999) A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62: 189–202.

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Graphodatsky AS, O’Brien PC et al. (2000) Reciprocal chromosome painting illuminates the history of genome evolution of the domestic cat, dog and human. Chromosome Res 8: 392–404.

    Article  Google Scholar