cambridge.org

Phylogenetic Comparative Methods: A User's Guide for Paleontologists

  • ️Wed Feb 19 2025

References

Ackerly, D. 2009. Conservatism and diversification of plant functional traits: Evolutionary rates versus phylogenetic signal. Proc. Natl. Acad. Sci. 106: 1969919706.Google Scholar

Adams, D. C. 2014. Quantifying and comparing phylogenetic evolutionary rates for shape and other high-dimensional phenotypic data. Syst. Biol. 63: 166177.Google Scholar

Anderson, P. S. L., Friedman, M., Ruta, M. 2013. Late to the table: Diversification of tetrapod mandibular biomechanics lagged behind the evolution of terrestriality. Integr. Comp. Biol. 53: 197208.Google Scholar

Ausich, W. I., Wright, D. F., Cole, S. R., Sevastopulo, G. D. 2020. Homology of posterior interray plates in crinoids: A review and new perspectives from phylogenetics, the fossil record and development. Palaeontology. 63: 525545.Google Scholar

Bapst, D. W. 2012. Paleotree: An R package for paleontological and phylogenetic analyses of evolution. Methods Ecol. Evol. 3: 803807.Google Scholar

Bapst, D. W. 2013a. A stochastic rate-calibrated method for time-scaling phylogenies of fossil taxa. Methods Ecol. Evol. 4: 724733.Google Scholar

Bapst, D. W. 2013b. When can clades be potentially resolved with morphology? PLoS One. 8: e62312.Google Scholar

Bapst, D. W. 2014a. Assessing the effect of time-scaling methods on phylogeny-based analyses in the fossil record. Paleobiology. 40: 331351.Google Scholar

Bapst, D. W. 2014b. Preparing palaeontological datasets for phylogenetic comparative methods. In: Garamszegi, L. Z., editor. Modern phylogenetic comparative methods and their application in evolutionary biology. Berlin, Heidelberg: Springer-Verlag. pp. 515544.Google Scholar

Bapst, D. W., Hopkins, M. J. 2017. Comparing cal3 and other a posteriori time-scaling approaches in a case study with the pterocephaliid trilobites. Paleobiology. 43: 4967.Google Scholar

Barido-Sottani, J., Pett, W., O’Reilly, J. E., Warnock, R. C. M. 2019. FossilSim: An R package for simulating fossil occurrence data under mechanistic models of preservation and recovery. Methods Ecol. Evol. 10: 835840.Google Scholar

Barido-Sottani, J., Saupe, E., Smiley, T. M., Soul, L. C., Wright, A. M., Warnock, R. C. M. 2020. Seven rules for simulations in paleobiology. Paleobiology. 46(4): 435444.Google Scholar

Barido-Sottani, J., Tiel, N. van, Hopkins, M. J., Wright, D. F., Stadler, T., Warnock, R. C. M. 2020. Ignoring fossil age uncertainty leads to inaccurate topology and divergence times in time calibrated tree inference. Frontiers in Ecology and Evolution, 8: 183Google Scholar

Baum, D. A., Smith, S. D. 2013. Tree thinking: An introduction to phylogenetic biology. Greenwood Village, CO: Roberts.Google Scholar

Benson, R. B. J., Choiniere, J. N. 2013. Rates of dinosaur limb evolution provide evidence for exceptional radiation in Mesozoic birds. Proc. R. Soc. B Biol. Sci. 280: 20131780.Google Scholar

Blomberg, S. P., Garland, T., Ives, A. R. 2003. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution. 57: 717745.Google Scholar

Blomberg, S. P., Rathnayake, S. I., Moreau, C. M. 2020. Beyond Brownian motion and the Ornstein-Uhlenbeck process: Stochastic diffusion models for the evolution of quantitative characters. Am. Nat. 195: 145165.Google Scholar

Blomberg, S. P., Lefevre, J. G., Wells, J. A., Waterhouse, M. 2012. Independent contrasts and PGLS regression estimators are equivalent. Syst. Biol. 61: 382391.Google Scholar

Boettiger, C., Coop, G., Ralph, P. 2012. Is your phylogeny informative? Measuring the power of comparative methods. Evolution. 66: 22402251.Google Scholar

Boucher, F. C., Démery, V., Conti, E., Harmon, L. J., Uyeda, J. 2018. A general model for estimating macroevolutionary landscapes. Syst. Biol. 67: 304319.Google Scholar

Brocklehurst, N., Brink, K. S. 2017. Selection towards larger body size in both herbivorous and carnivorous synapsids during the Carboniferous. Facets. 2: 6884.Google Scholar

Butler, M. A., King, A. A. 2004. Phylogenetic comparative analysis: A modeling approach for adaptive evolution. Am. Nat. 164: 683695.Google Scholar

Button, D. J., Barrett, P. M., Rayfield, E. J. 2017. Craniodental functional evolution in sauropodomorph dinosaurs. Paleobiology. 43: 435462.Google Scholar

Clarke, J. T., Lloyd, G. T., Friedman, M. 2016. Little evidence for enhanced phenotypic evolution in early teleosts relative to their living fossil sister group. Proc. Natl. Acad. Sci. 113: 1153111536.Google Scholar

Close, R. A., Friedman, M., Lloyd, G. T., Benson, R. B. J. 2015. Evidence for a mid-Jurassic adaptive radiation in mammals. Curr. Biol. 25: 21372142.Google Scholar

Cole, S. R., Wright, D. F., Ausich, W. I. 2019. Phylogenetic community paleoecology of one of the earliest complex crinoid faunas (Brechin Lagerstätte, Ordovician). Palaeogeogr. Palaeoclimatol. Palaeoecol. 521: 8298.Google Scholar

Cooper, N., Thomas, G. H., FitzJohn, R. G. 2016. Shedding light on the “dark side” of phylogenetic comparative methods. Methods Ecol. Evol. 7: 693699.Google Scholar

Darwin, C. R. 1859. On the origin of species by means of natural selection. London: John Murray.Google Scholar

Diniz-Filho, J. A. F., Alves, D. M. C. C., Villalobos, F., Sakamoto, M., Brusatte, S. L., Bini, L. M. 2015. Phylogenetic eigenvectors and nonstationarity in the evolution of theropod dinosaur skulls. J. Evol. Biol. 28: 14101416.Google Scholar

Drury, J., Clavel, J., Manceau, M., Morlon, H. 2016. Estimating the effect of competition on trait evolution using maximum likelihood inference. Syst. Biol. 65: 700710.Google Scholar

Eastman, J. M., Alfaro, M. E., Joyce, P., Hipp, A. L., Harmon, L. J. 2011. A novel comparative method for identifying shifts in the rate of character evolution on trees. Evolution. 65: 35783589.Google Scholar

Erwin, D. H. 2007. Disparity: Morphological pattern and developmental context. Palaeontology. 50: 5773.Google Scholar

Felsenstein, J. 1985. Phylogenies and the comparative method. Am. Nat. 125: 115.Google Scholar

Finarelli, J. A., Flynn, J. J. 2006. Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): The effects of incorporating data from the fossil record. Syst. Biol. 55: 301313.Google Scholar

Foote, M. 1996. On the probability of ancestors in the fossil record. Paleobiology. 22: 141151.Google Scholar

Freckleton, R. P. 2009. The seven deadly sins of comparative analysis. J. Evol. Biol. 22: 13671375.Google Scholar

Garamszegi, L. Z. 2014. Modern phylogenetic comparative methods and their application in evolutionary biology. Berlin, Heidelberg: Springer-Verlag.Google Scholar

Garland, T., Ives, A. R. 2000. Using the past to predict the present: Confidence intervals for regression equations in phylogenetic comparative methods. Am. Nat. 155: 346364.Google Scholar

Gascuel, O., Steel, M. 2014. Predicting the ancestral character changes in a tree is typically easier than predicting the root state. Syst. Biol. 63: 421435.Google Scholar

Gavryushkina, A., Welch, D., Stadler, T., Drummond, A. 2014. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Comput. Biol. 10: e1003919.Google Scholar

Gavryushkina, A., Heath, T. A., Ksepka, D. T., Stadler, T., Welch, D., Drummond, A. J. 2017. Bayesian total-evidence dating reveals the recent crown radiation of penguins. Syst. Biol. 66: 5773.Google Scholar

Gearty, W., Payne, J. L. 2020. Physiological constraints on body size distributions in Crocodyliformes. Evolution. 74: 245255.Google Scholar

Halliday, T. J. D., Goswami, A. 2016. The impact of phylogenetic dating method on interpreting trait evolution: A case study of Cretaceous-Palaeogene eutherian body-size evolution. Biol. Lett. 12: 612.Google Scholar

Hansen, T. F. 1997. Stabilising selection and the comparative analysis of adaptation. Evolution. 51: 13421351.Google Scholar

Hansen, T. F., Martins, E. P. 1996. Translating between microevolutionary process and macroevolutionary patterns: The correlation structure of interspecific data. Evolution. 50: 14041417.Google Scholar

Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., Challenger, W. 2008. GEIGER: Investigating evolutionary radiations. Bioinformatics. 24: 129131.Google Scholar

Harmon, L. J., Losos, J. B., Davies, T. J., Gillespie, R. G., Gittleman, J. L., Jennings, B. W., Kozak, K. H., McPeek, M. A., Moreno-Roark, F., Near, T. J., Purvis, A., Ricklefs, R. E., Schluter, D., Schulte, II J. A., Seehausen, O., Sidlauskas, B. L., Torres-Carvajal, O., Weir, J. T., Mooers, A. Ø. 2010. Early bursts of body size and shape evolution are rare in comparative data. Evolution. 64: 23852396.Google Scholar

Harrison, L. B., Larsson, H. C. E. 2015. Among-character rate variation distributions in phylogenetic analysis of discrete morphological characters. Syst. Biol. 64: 307324.Google Scholar

Harvey, P. H., Read, A. F., Nee, S. 1995. Further remarks on the role of phylogeny in comparative ecology. J. Ecol. 83: 733.Google Scholar

Heath, T. A., Huelsenbeck, J. P., Stadler, T. 2014. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proc. Natl. Acad. Sci. 111: E2957E2966.Google Scholar

Hedman, M. M. 2010. Constraints on clade ages from fossil outgroups. Paleobiology. 36: 1631.Google Scholar

Ho, L. S. T., Ané, C. 2014a. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63: 397408.Google Scholar

Ho, L. S. T., Ané, C. 2014b. Intrinsic inference difficulties for trait evolution with Ornstein-Uhlenbeck models. Methods Ecol. Evol. 5: 11331146.Google Scholar

Hopkins, M. J., Smith, A. B. 2015. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Proc. Natl. Acad. Sci. U.S.A. 112: 37583763.Google Scholar

Hunt, G. 2012. Measuring rates of phenotypic evolution and the inseparability of tempo and mode. Paleobiology. 38: 351373.Google Scholar

Hunt, G. 2013. Testing the link between phenotypic evolution and speciation: An integrated palaeontological and phylogenetic analysis. Methods Ecol. Evol. 4: 714723.Google Scholar

Hunt, G., Carrano, M. T. 2010. Models and methods for analyzing phenotypic evolution in lineages and clades. Paleontol. Soc. Pap. 16: 245269.Google Scholar

Hunt, G., Slater, G. 2016. Integrating paleontological and phylogenetic approaches to macroevolution. Annu. Rev. Ecol. Evol. Syst. 47: 189213.Google Scholar

Kammer, T. W. 2008. Paedomorphosis as an adaptive response in pinnulate cladid crinoids from the Burlington limestone (Mississippian, Oseadean) of the Mississippi Valley. In: Webster, G. D., Maples, C. D., editors. Echinoderm paleobiology. Bloomington, IN: University of Indiana Press. pp. 177195.Google Scholar

Lande, R. 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution. 30: 314.Google Scholar

Landis, M. J. 2017. Biogeographic dating of speciation times using paleogeographically informed processes. Syst. Biol. 64: 307324.Google Scholar

Landis, M., Schraiber, J. G. 2017. Pulsed evolution shaped modern vertebrate diversity. Proc. Natl. Acad. Sci. U.S.A. 114: 1322413229.Google Scholar

Lewis, P. O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50: 913925.Google Scholar

Lloyd, G. T. 2016. Estimating morphological diversity and tempo with discrete character-taxon matrices: Implementation, challenges, progress, and future directions. Biol. J. Linn. Soc. 118: 131151.Google Scholar

Lloyd, G. T., Wang, S. C., Brusatte, S. L. 2012. Identifying heterogeneity in rates of morphological evolution: Discrete character change in the evolution of lungfish (Sarcopterygii; Dipnoi). Evolution. 66: 330348.Google Scholar

Manceau, M., Lambert, A., Morlon, H. 2017. A unifying comparative phylogenetic framework including traits coevolving across interacting lineages. Syst. Biol. 66: 551568.Google Scholar

Matzke, N. J., Wright, A. 2016. Inferring node dates from tip dates in fossil Canidae: The importance of tree priors. Biol. Lett. 12: 14.Google Scholar

Mitov, V., Bartoszek, K., Stadler, T. 2019. Automatic generation of evolutionary hypotheses using mixed Gaussian phylogenetic models. Proc. Natl. Acad. Sci. 116: 1692116926.Google Scholar

Morlon, H., Lewitus, E., Condamine, F. L., Manceau, M., Clavel, J., Drury, J. 2016. RPANDA: An R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 7: 589597.Google Scholar

Nielsen, R. 2002. Mapping mutations on phylogenies. Syst. Biol. 51: 729739.Google Scholar

Nunn, C. L. 2011. The comparative approach in evolutionary anthropology and biology. Chicago: University of Chicago Press.Google Scholar

Nunn, C. L., Barton, R. A. 2001. Comparative methods for studying primate adaptation and allometry. Evol. Anthropol. 10: 8198.Google Scholar

O’Meara, B. C., Ané, C., Sanderson, M. J., Wainwright, P. C. 2006. Testing for different rates of continuous trait evolution using likelihood. Evolution. 60: 922933.Google Scholar

O’Reilly, J. E., Puttick, M. N., Parry, L., Tanner, A. R., Tarver, J. E., Fleming, J., Pisani, D., Donoghue, P. C. J. 2016. Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data. Biol. Lett. 12: 20160081.Google Scholar

Paradis, E., Claude, J., Strimmer, K. 2004. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics. 20: 289290.Google Scholar

Parins-Fukuchi, C. 2020. Detecting mosaic patterns in macroevolutionary disparity. Am. Nat. 195: 129144.Google Scholar

Pennell, M. W., Fitzjohn, R. G., Cornwell, W. K., Harmon, L. J. 2015. Model adequacy and the macroevolution of angiosperm functional traits. Am. Nat. 186: E33E50.Google Scholar

Pennell, M. W., Eastman, J. M., Slater, G. J., Brown, J. W., Uyeda, J. C., FitzJohn, R. G., Alfaro, M. E., Harmon, L. J. 2014. Geiger V2.0: An expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics. 30: 22162218.Google Scholar

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. 2019. nlme: Linear and nonlinear mixed effects models. R package version 3: 1140.Google Scholar

Polly, P. D. 2019. Spatial processes and evolutionary models: A critical review. Palaeontology. 62: 175195.Google Scholar

Puttick, M. N. 2016. Partially incorrect fossil data augment analyses of discrete trait evolution in living species. Biol. Lett. 12: 20160392.Google Scholar

Puttick, M. N., Ingram, T., Clarke, M., Thomas, G. H. 2020. MOTMOT: Models of trait macroevolution on trees (an update). Methods Ecol. Evol. 11: 464471.Google Scholar

Puttick, M. N., O’Reilly, J. E., Pisani, D., Donoghue, P. C. J. 2019. Probabilistic methods outperform parsimony in the phylogenetic analysis of data simulated without a probabilistic model. Palaeontology. 62: 117.Google Scholar

Revell, L.J. (2010), Phylogenetic signal and linear regression on species data. Methods in Ecology and Evolution, 1: 319–329.Google Scholar

Revell, L. J. 2012. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3: 217223.Google Scholar

Revell, L. J. 2013. Two new graphical methods for mapping trait evolution on phylogenies. Methods Ecol. Evol. 4: 754759.Google Scholar

Revell, L. J. 2014. Ancestral character estimation under the threshold model from quantitative genetics. Evolution. 68: 743759.Google Scholar

Revell, L. J., Schliep, K., Valderrama, E., Richardson, J. E. 2018. Graphs in phylogenetic comparative analysis: Anscombe’s quartet revisited. Methods Ecol. Evol. 9: 21452154.Google Scholar

Rohlf, F. J. 2006. A comment on phylogenetic correction. Evolution. 60: 1509.Google Scholar

Ruta, M., Krieger, J., Angielczyk, K. D., Wills, M. A. 2019. The evolution of the tetrapod humerus: Morphometrics, disparity, and evolutionary rates. Earth Environ. Sci. Trans. R. Soc. Edinburgh. 109: 351369.Google Scholar

Sallan, L., Friedman, M., Sansom, R. S., Bird, C. M., Sansom, I. J. 2018. The nearshore cradle of early vertebrate diversification. Science. 464: 460464.Google Scholar

Silvestro, D., Kostikova, A., Litsios, G., Pearman, P. B., Salamin, N. 2015. Measurement errors should always be incorporated in phylogenetic comparative analysis. Methods Ecol. Evol. 6: 340346.Google Scholar

Simpson, G. G. 1944. Tempo and mode in evolution. New York: Columbia University Press.Google Scholar

Slater, G. J. 2013. Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous-Palaeogene boundary. Methods Ecol. Evol. 4: 734744.Google Scholar

Slater, G. J. 2014. Correction to “Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous-Palaeogene boundary,” and a note on fitting macroevolutionary models to comparative paleontological data sets. Methods Ecol. Evol. 5: 714718.Google Scholar

Slater, G. J., Pennell, M. W. 2014. Robust regression and posterior predictive simulation increase power to detect early bursts of trait evolution. Syst. Biol. 63: 293308.Google Scholar

Slater, G. J., Harmon, L. J., Alfaro, M. E. 2012. Integrating fossils with molecular phylogenies improves inference of trait evolution. Evolution. 66: 39313944.Google Scholar

Soul, L. C., Benson, R. B. J. 2017. Developmental mechanisms of macroevolutionary change in the tetrapod axis: A case study of Sauropterygia. Evolution. 71: 11641177.Google Scholar

Soul, L. C., Friedman, M. 2015. Taxonomy and phylogeny can yield comparable results in comparative palaeontological analyses. Syst. Biol. 64: 608620.Google Scholar

Soul, L. C., Friedman, M. 2017. Bias in phylogenetic measurements of extinction and a case study of end-Permian tetrapods. Palaeontology. 60: 169185.Google Scholar

Speed, M. P., Arbuckle, K. 2017. Quantification provides a conceptual basis for convergent evolution. Biol. Rev. 92: 815829.Google Scholar

Stadler, T. 2010. Sampling-through-time in birth-death trees. J. Theor. Biol. 267: 396404.Google Scholar

Stadler, T., Gavryushkina, A., Warnock, R. C. M., Drummond, A. J., Heath, T. A. 2018. The fossilized birth-death model for the analysis of stratigraphic range data under different speciation modes. J. Theor. Biol. 447: 4155.Google Scholar

Stayton, C. T. 2015. The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evolution. 69: 21402153.Google Scholar

Thomas, G. H., Freckleton, R. P. 2012. MOTMOT: Models of trait macroevolution on trees. Methods Ecol. Evol. 3: 145151.Google Scholar

Uyeda, J. C., Zenil-Ferguson, R., Pennell, M. W. 2018. Rethinking phylogenetic comparative methods. Syst. Biol. 67: 10911109.Google Scholar

Voje, K. L., Starrfelt, J., Liow, L. H. 2018. Model adequacy and microevolutionary explanations for stasis in the fossil record. Am. Nat. 191: 509523.Google Scholar

Wagner, P. J. 2012. Modelling rate distributions using character compatibility: implications for morphological evolution among fossil invertebrates. Biol. Lett. 8: 143146.Google Scholar

Wagner, P. J., Marcot, J. D. 2010. Probabilistic phylogenetic inference in the fossil record: current and future applications. Paleontol. Soc. Pap. 16: 189211.Google Scholar

Wagner, P.J. and Marcot, J.D., 2013. Modelling distributions of fossil sampling rates over time, space and taxa: assessment and implications for macroevolutionary studies. Methods in Ecology and Evolution, 4(8), pp.703713.Google Scholar

Wesley-Hunt, G. D. 2005. The morphological diversification of carnivores in North America. Paleobiology. 31: 3555.Google Scholar

Westoby, M., Leishman, M., Lord, J. 2016. Further remarks on phylogenetic correction. J. Ecol. 83: 727729.Google Scholar

Wiley, E. O., Lieberman, B. S. 2011. Phylogenetics: Theory and practice of phylogenetic systematics. New York: John Wiley & Sons.Google Scholar

Wright, A. M. 2019. A systematist’s guide to estimating Bayesian phylogenies from morphological data. Insect Syst. Divers. 3: 2.Google Scholar

Wright, A. M., Hillis, D. M. 2014. Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data. PLoS One. 9: e109210.Google Scholar

Wright, A. M., Lloyd, G. T., Hillis, D. M. 2016. Modeling character change heterogeneity in phylogenetic analyses of morphology through the use of priors. Syst. Biol. 65: 602611.Google Scholar

Wright, D. F. 2015. Fossils, homology, and phylogenetic paleo-ontogeny: A reassessment of primary posterior plate homologies among fossil and living crinoids with insights from developmental biology. Paleobiology. 41: 570591.Google Scholar

Wright, D. F. 2017a. Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata). J. Paleontol. 91: 799814.Google Scholar

Wright, D. F. 2017b. Phenotypic innovation and adaptive constraints in the evolutionary radiation of palaeozoic crinoids. Sci. Rep. 7: 110.Google Scholar

Wright, D. F., Toom, U. 2017. New crinoids from the Baltic region (Estonia): Fossil tip‐dating phylogenetics constrains the origin and Ordovician–Silurian diversification of the Flexibilia (Echinodermata). Palaeontology. 60: 893910.Google Scholar