Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana) - Plant Molecular Biology
- ️Theissen, Günter
- ️Tue Jul 01 2003
References
Albert, V.A., Gustaffson, M.H.G. and Di Laurenzio, L. 1998. Ontogenetic systematics, molecular developmental genetics, and the angiosperm petal. In: D.E. Soltis, P.S. Soltis and J.J. Doyle (Eds.) Molecular Systematics of Plants II, Kluwer Academic Publishers, Boston, MA/Dordrecht, Netherlands, pp. 349-374.
Ambrose, B.A., Lerner, D.R., Ciceri, P., Padilla, C.M., Yanofsky, M.F. and Schmidt, R.J. 2000. Molecular and genetic analyses of the Silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol. Cell 5: 569-579.
Baum, D.A. 1998. The evolution of plant development. Curr. Opin. Plant Biol. 1: 79-86.
Baum, D.A. and Whitlock, B.A. 1999. Genetic clues to petal evolution. Curr. Biol. 9: R525-R527.
Chung, Y.Y., Kim, S.R., Kang, H.G., Noh, Y.S., Park, M.C., Finkel, D. and An, G. 1995. Characterization of two rice MADS box genes homologous to GLOBOSA. Plant Sci. 109: 45-56.
Coen, E.S. and Meyerowitz, E.M. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353: 31-37.
Dahlgren, R.M.T., Clifford, H.T. and Yeo, P.F. 1985. In: Dahlgren, R.M.T., Clifford, H.T., Yeo, P.F. (Eds.) The Families of the Monocotyledons, Springer-Verlag, Berlin/Heidelberg, pp. 65.
Egea-Cortines, M., Saedler, H. and Sommer, H. 1999. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18: 5370-5379.
Frohman, M.A., Dush, M.K. and Martin, G.R. 1988. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85: 8998-9002.
Goto, K. and Meyerowitz, E.M. 1994. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8: 1548-1560.
Honma, T. and Goto, K. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525-529.
Jack, T., Brockman, L.L. and Meyerowitz, E.M. 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683-697.
Kang, H.G., Jeon, J.S., Lee, S. and An, G. 1998. Identification of class B and class C floral organ identity genes from rice plants. Plant Mol. Biol. 38: 1021-1029.
Kisaka, H., Kisaka, M. and Kameya, T. 1996. Characterization of interfamilial somatic hybrids between 5-methyltryptophanresistant (5MT-resistant) rice (Oryza sativa L.) and 5MTsensitive carrot (Daucus carota L.): expression of resistance to 5MT by somatic hybrids. Breed. Sci. 46: 221-226.
Kramer, E.M. and Irish, V.F. 2000. Evolution of the petal and stamen developmental programs: evidence from comparative studies of the lower eudicots and basal angiosperms. Int. J. Plant Sci. 161 (Suppl.): S29-S40.
Kramer, E.M., Dorit, R.L. and Irish, V.F. 1998. Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADSbox gene lineages. Genetics 149: 765-783.
Krizek, B.A. and Meyerowitz, E.M. 1996. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 122: 11-22.
Kyozuka, J., Kobayashi, T., Morita, M. and Shimamoto, K. 2000.Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol. 41: 710-718.
Lee, S., Jeon, J.S., Moon, Y.H. and An, G. 2000. Alteration of rice floral organ identity by ectopic expression of rice MADSbox gene. In: Proceedings of the 4th International Rice Genetics Symposium.
Moon, Y.H., Jung, J.Y., Kang, H.G. and An, G. 1999. Identification of a rice APETALA3 homologue by yeast two-hybrid screening. Plant Mol. Biol. 40: 167-177.
Münster, T., Pahnke, J., Di Rosa, A., Kim, J.T., Martin, W., Saedler, H. and Theissen, G. 1997. Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc. Natl. Acad. Sci. USA 94: 2415-2420.
Münster, T., Wingen, L.U., Faigl, W., Werth, S., Saedler, H. and Theissen, G. 2001. Characterization of three GLOBOSA-like MADS-box genes from maize: evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses. Gene 262: 1-13.
Murray, M.G. and Thompson, W.F. 1980. Rapid isolation of high molecular weight plant DNA. Nucl. Acid. Res. 8: 4321-4325.
Park, J.H., Ishikawa, Y., Yoshida, R., Kanno, A. and Kameya, T. 2003. Expression of AODEF, a B-functional MADS-box gene, in stamens and inner tepals of the dioecious species Asparagus officinalis L. Plant Mol. Biol. 51: 867-875.
Pelaz, S., Tapia-Lopez, R., Alvarez-Buylla, E.R. and Yanofsky, M.F. 2001. Conversion of leaves into petals in Arabidopsis. Curr. Biol. 11: 182-184.
Perrière, G. and Gouy, M. 1996. WWW-Query: an on-line retrieval system for biological sequence banks. Biochemie 78: 364-369.
Riechmann, J.L., Krizek, B.A. and Meyerowitz, E.M. 1996. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Proc. Natl. Acad. Sci. USA 93: 4793-4798.
Sambrook, J. and Russell, D.W. 2001. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.
Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor, P.J., Hansen, R., Tetens, F., Lönnig, W.E., Saedler, H. and Sommer, H. 1992. Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 11: 251-263.
Soltis, P.S., Soltis, D.E. and Chase, M.W. 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402: 402-403.
Theissen, G. 2001. Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4: 75-85.
Theissen, G. and Saedler, H. 2001. Floral quartets. Nature 409: 469-471.
Theissen, G., Kim, J. and Saedler, H. 1996. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43: 484-516.
Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Münster, T., Winter, K.U. and Saedler, H. 2000. A short history of MADS-box genes in plants. Plant Mol. Biol. 42: 115-149.
Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl. Acids. Res. 22: 4673-4680.
Tröbner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lönnig, W.E., Saedler, H., Sommer, H. and Schwarz-Sommer, Z. 1992. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 11: 4693-4704.
Tzeng, T.Y. and Yang, C.H. 2001. A MADS box gene from lily (Lilium longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant Cell Physiol. 42: 1156-1168.
van Tunen, A.J., Eikelboom, W. and Angenent, G.C. 1993. Floral organogenesis in Tulipa. Flow. Newsl. 16: 33-38.
Weigel, D. and Meyerowitz, E.M. 1994. The ABCs of floral homeotic genes. Cell 78: 203-209.
Winter, K.U., Weiser, C., Kaufmann, K., Bohne, A., Kirchner, C., Kanno, A., Saedler, H. and Theissen, G. 2002. Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization. Mol. Biol. Evol. 19: 587-596.
Zachgo, S., Silva, E.A., Motte, P., Tröbner, W., Saedler, H. and Schwarz-Sommer, Z. 1995. Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant. Development 121: 2861-2875.