nature.com

Laboratory simulation of Jupiter's Great Red Spot - Nature

  • ️Swinney, Harry L.
  • ️Thu Feb 25 1988
  • Letter
  • Published: 25 February 1988

Nature volume 331pages 689–693 (1988)Cite this article

Abstract

Isolated large stable vortices have long been observed in the jovian atmosphere and more recently on Saturn. The existence of such stable vortices in strongly turbulent planetary atmospheres is a challenging problem in fluid mechanics. In a numerical simulation Marcus1 found that a single stable vortex developed for a wide variety of conditions in a turbulent shear flow in a rotating annulus. To test this we conducted an experiment on a rotating annulus filled with fluid pumped in the radial direction. The annulus rotates rigidly (there is no differential rotation), but the action of the Coriolis force on the radially pumped fluid produces a counter-rotating jet. Coherent vortices spontaneously form in this turbulent jet, and for a wide range of rotation and pumping rates the flow evolves until only one large vortex remains.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Marcus, P. S. Nature 331, 693–696 (1988).

    Article  ADS  Google Scholar 

  2. Pedlosky, J. Geophysical Fluid Dynamics (Springer, New York, 1979).

    Book  Google Scholar 

  3. Beebe, R. F. & Hockey, T. A. Icarus 67, 96–105 (1986).

    Article  ADS  CAS  Google Scholar 

  4. MacLow, M. M. & Ingersoll, A. P. Icarus 65, 353–369 (1986).

    Article  ADS  Google Scholar 

  5. Mitchell, J. L., Beebe, R. F., Ingersoll, A. P. & Garneau, G. W. J. geophys Res. 86, 8751–8757 (1981).

    Article  ADS  Google Scholar 

  6. Williams, G. P. Adv. Geophys. 28A, 381–427 (1985).

    Article  ADS  Google Scholar 

  7. Ingersoll, A. P. & Cuong P. G. J. atmos. Sci. 38, 2067–2076 (1981).

    Article  ADS  Google Scholar 

  8. Hatzes, A., Wenkert, D. D., Ingersoll, A. P. & Danielson, G.E J. geophys. Res. 86, 8754–8749 (1981).

    Article  ADS  Google Scholar 

  9. Flasar, F. M. Icarus 65, 280–303 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Colin de Verdier, A. Geophys. Astrophys. Fluid Dyn. 15, 213–251 (1980).

    Article  ADS  Google Scholar 

  11. McEwan, A. D., Thompson, R. O. R. Y. & Plumb, R. A. J. Fluid Mech. 9, 655–672 (1980).

    Article  ADS  Google Scholar 

  12. Antipov, S. V., Nezlin, M. V., Snezhkin, E. N. & Trubinikov, A. S. Nature 323, 238–240 (1986).

    Article  ADS  Google Scholar 

  13. Read, P. L. & Hide, R. Nature 308, 45–48 (1984).

    Article  ADS  Google Scholar 

  14. Hide, R. & Titman, C. W. J. Fluid Mech. 29, 39–60 (1967).

    Article  ADS  Google Scholar 

  15. Rabaud, M. & Couder, Y. J. Fluid Mech. 136, 291–319 (1983).

    Article  ADS  Google Scholar 

  16. Maxworthy, T. & Redekopp, L. G. Icarus 29, 261–271 (1976).

    Article  ADS  Google Scholar 

  17. Petviashvili, V. I. Soviet Astr. Lett. 9, 137–138 (1983).

    ADS  Google Scholar 

  18. Dowling, T. E. & Ingersoll, A. P. J. atmos. Sci. 45 (1988).

Download references

Author information

Authors and Affiliations

  1. Center for Nonlinear Dynamics and the Department of Physics, The University of Texas, Austin, Texas, 78712, USA

    Jöel Sommeria, Steven D. Meyers & Harry L. Swinney

  2. Madylam, ENSHMG, BP 95, 38402, St Martin D'Heres Cedex, France

    Jöel Sommeria

Authors

  1. Jöel Sommeria

    You can also search for this author in PubMed Google Scholar

  2. Steven D. Meyers

    You can also search for this author in PubMed Google Scholar

  3. Harry L. Swinney

    You can also search for this author in PubMed Google Scholar

About this article

Cite this article

Sommeria, J., Meyers, S. & Swinney, H. Laboratory simulation of Jupiter's Great Red Spot. Nature 331, 689–693 (1988). https://doi.org/10.1038/331689a0

Download citation

  • Received: 16 June 1987

  • Accepted: 11 December 1987

  • Issue Date: 25 February 1988

  • DOI: https://doi.org/10.1038/331689a0