nature.com

The cosmic microwave background radiation temperature at a redshift of 2.34 - Nature

  • ️Ledoux, C.
  • ️Thu Dec 21 2000

References

  1. Alpher, R. A., Bethe, H. A. & Gamov, G. Evolution of chemical elements. Phys. Rev. 73, 803–804 (1948).

    Article  ADS  CAS  Google Scholar 

  2. Penzias, A. A. & Wilson, R. A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419–421 (1965).

    Article  ADS  Google Scholar 

  3. Mather, J. C. et al. Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument. Astrophys. J. 420, 439–444 (1994).

    Article  ADS  Google Scholar 

  4. Bahcall, J. N., Joss, P. C. & Lynds, R. On the temperature of the microwave background radiation at a large redshift. Astrophys. J. 182, L95–L98 (1973).

    Article  ADS  CAS  Google Scholar 

  5. Meyer, D. M., Black, J. H., Chaffee, F. H., Foltz, C. B. & York, D. G. An upper limit on the microwave background temperature at z = 1.776. Astrophys. J. 308, L37–L41 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Songaila, A. et al. Measurement of the microwave background temperature at a redshift of 1.776. Nature 371, 43–45 (1994).

    Article  ADS  Google Scholar 

  7. Songaila, A., Cowie, L. L., Hogan, C. & Rugers, M. Deuterium abundance and background radiation temperature in high redshift primordial clouds. Nature 368, 599–604 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Lu, L., Wargent, W. L. W., Womble, D. S. & Barlow, T. A. Abundances at high redshifts: The chemical enrichment history of damped Lyman-α galaxies. Astrophys. J. Suppl. Ser. 107, 475–520 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Ge, J., Bechtold, J. & Black, J. H. A new measurement of the cosmic microwave background radiation temperature at z = 1.97. Astrophys. J. 474, 67–73 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Roth, K. C. & Bauer, J. M. The z = 1.6748 C I absorber toward PKS 1756+237. Astrophys. J. 515, L57–L60 (1999).

    Article  ADS  Google Scholar 

  11. D'odorico, S. et al. Performance of UVES, the echelle spectrograph for the ESO VLT and highlights of the first observations of stars and quasors. Proc. SPIE 4005, 121–130 (2000).

    Article  ADS  Google Scholar 

  12. Welty, D. E. et al. The diffuse interstellar cloud toward 23 Orionis. Astrophys. J. Suppl. Ser. 124, 465–501 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Savage, B. D. & Sembach, K. R. Interstellar abundances from absorption-line observations with the Hubble space telescope. Annu. Rev. Astron. Astrophys. 34, 279–330 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Pettini, M., Smith, L. J., King, D. L. & Hunstead, R. W. The metallicity of high-redshift galaxies: the abundance of zinc in 34 damped Lyman-α systems from z = 0.7 to 3.4. Astrophys. J. 486, 665–680 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Ge, J. & Bechtold, J. in Highly Redshifted Radio Lines (eds Carilli, C. L., Radford, S. J. E., Menten, K. M. & Langston, G. I.) 121–131 (ASP Conf. Series Vol. 156, 1999).

    Google Scholar 

  16. Shull, J. M. et al. FUSE observations of diffuse interstellar molecular hydrogen. Astrophys. J. 538, L73–L76 (2000).

    Article  ADS  Google Scholar 

  17. Jura, M. Interstellar clouds containing optically thick H2. Astrophys. J. 197, 581–586 (1975).

    Article  ADS  CAS  Google Scholar 

  18. Dalgarno, A. & Wright, E. L. Infrared emissivities of H2 and HD. Astrophys. J. 174, L49–L51 (1972).

    Article  ADS  CAS  Google Scholar 

  19. Srianand, R. & Petitjean, P. Molecules in the zabs = 2.8112 damped system toward PKS 0528-250. Astron. Astrophys. 335, 33–40 (1998).

    ADS  CAS  Google Scholar 

  20. Bahcall, J. N. & Wolf, R. A. Fine-structure transitions. Astrophys. J. 152, 701–729 (1968).

    Article  ADS  CAS  Google Scholar 

  21. Timmes, F. X., Lauroesch, J. J. & Truran, J. W. Abundance histories of QSO absorption systems. Astrophys. J. 518, 468–476 (1995).

    Article  ADS  Google Scholar 

  22. Nussbaumer, H. & Rusca, C. Forbidden transitions in the C I sequence. Astron. Astrophys. 72, 129–133 (1979).

    ADS  CAS  Google Scholar 

  23. Launay, J. M. & Roueff, E. Fine structure excitation of carbon and oxygen by atomic hydrogen impact. Astron. Astrophys. 56, 289–292 (1977).

    ADS  CAS  Google Scholar 

  24. Jenkins, E. B. & Shaya, E. J. A survey of interstellar C I insight on carbon abundances UV grain albedoes, and pressures in the interstellar medium. Astrophys. J. 231, 55–72 (1979).

    Article  ADS  CAS  Google Scholar 

  25. Keenan, F. P., Lennon, D. J., Johnson, C. T. & Kingston, A. E. Fine structure population for the 2P ground states of C II. Mon. Not. R. Astron. Soc. 220, 571–576 (1986).

    Article  ADS  CAS  Google Scholar 

  26. Roth, K. C. & Meyer, D. M. Cyanogen excitation in diffuse interstellar cloud. Astrophys. J. 441, 129–143 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Sunyaev, R. A. & Zeldovich, Ya. B. The velocity of clusters of galaxies relative to the microwave background—The possibility of its measurement. Mon. Not. R. Astron. Soc. 190, 413–420 (1980).

    Article  ADS  Google Scholar 

  28. Morton, D. C. Atomic data for resonance absorption lines. I—Wavelengths longward of the Lyman limit. Astrophys. J. Suppl. Ser. 77, 119–202 (1991).

    Article  ADS  CAS  Google Scholar 

Download references