nature.com

Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum - Nature

  • ️Dickens, Gerald R.
  • ️Thu Aug 10 2006

References

  1. Zachos, J. et al. A transient rise in tropical sea surface temperature during the Paleocene-Eocene thermal maximum. Science 302, 1551–1554 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Bowen, G. J., Beerling, D. J., Koch, P. L., Zachos, J. C. & Quattlebaum, T. A humid climate state during the Palaeocene/Eocene thermal maximum. Nature 432, 495–499 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Thomas, D. J., Zachos, J. C., Bralower, T. J., Thomas, E. & Bohaty, S. Warming the fuel for the fire: evidence for the thermal dissociation of methane hydrate during the Paleocene-Eocene thermal maximum. Geology 30, 1067–1070 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Zachos, J. C. et al. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308, 1611–1615 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Backman, J., Moran, K., McInroy, D. B., Mayer, L. A. & Expedition Scientists. Arctic Coring Expedition (ACEX). Proc. IODP 302 l/doi:10.2204/iodp.proc.302.2006 (Integrated Ocean Drilling Program Management International, College Station, Texas, 2006).

  6. Caballero, R. & Langen, P. The dynamic range of poleward energy transport in an atmospheric general circulation model. Geophys. Res. Lett. 32, doi:10.1029/2004GL021581 (2005)

  7. Sluijs, A. et al. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature 441, 610–613 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Eglinton, G. & Hamilton, R. J. Leaf epicuticular waxes. Science 156, 1322–1335 (1967)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Zegouagh, Y., Derenne, S., Largeau, C., Bardoux, G. & Mariotti, A. Organic matter sources and early diagenetic alteration in Arctic surface sediments (Lena River delta and Laptev Sea, Eastern Siberia), II. Molecular and isotopic studies of hydrocarbons. Org. Geochem. 28, 571–583 (1998)

    Article  CAS  Google Scholar 

  10. Han, J. & Calvin, M. Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments. Proc. Natl Acad. Sci. USA 64, 436–443 (1969)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grimalt, J. & Albaiges, J. Sources and occurrence of C12–22 n-alkane distributions with even carbon-number preference in sedimentary environments. Geochim. Cosmochim. Acta 51, 1379–1384 (1987)

    Article  ADS  CAS  Google Scholar 

  12. Muri, G., Wakeham, S. G., Pease, T. K. & Faganeli, J. Evaluation of lipid biomarkers as indicators of changes in organic matter delivery to sediments from Lake Planina, a remote mountain lake in NW Slovenia. Org. Geochem. 35, 1083–1093 (2004)

    Article  CAS  Google Scholar 

  13. Sachse, D., Radke, J. & Gleixner, G. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability. Geochim. Cosmochim. Acta 68, 4877–4889 (2004)

    Article  ADS  CAS  Google Scholar 

  14. Sternberg, L. D. L. D/H ratios of environmental water recorded by D/H ratios of plant lipids. Nature 333, 59–61 (1988)

    Article  ADS  Google Scholar 

  15. Sauer, P. E., Eglinton, T. I., Hayes, J. M., Schimmelmann, A. & Sessions, A. L. Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochim. Cosmochim. Acta 65, 213–222 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Yakir, D. in Stable Isotopes (ed. Griffiths, H.) 147–168 (BIOS Scientific Publishers, Oxford, 1998)

    Google Scholar 

  17. Chikaraishi, Y. & Naraoka, H. Compound-specific δD and δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry 63, 361–371 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. Yang, H., Equiza, A. M., Jagels, R., Pagani, M. & Briggs, D. Carbon and hydrogen isotopic compositions of deciduous conifers under a continuous-light environment: implications for the interpretation of the high-latitudinal plant isotope record at the PETM. (Salt Lake City Annual Meeting, October 16–19, The Geological Society of America, 2005).

  19. Bowen, G. J. & Revenaugh, J. Interpolating the isotopic composition of modern meteoric precipitation. Wat. Resour. Res. 39, doi:10.1029/2003WR002086 (2003)

  20. Pierrehumbert, R. T. Lateral mixing as a source of subtropical water vapor. Geophys. Res. Lett. 25, 151–154 (1998)

    Article  ADS  Google Scholar 

  21. Boyle, E. A. Cool tropical temperatures shift the global δ18O-T relationship: An explanation for the ice core δ18O-borehole thermometry conflict? Geophys. Res. Lett. 24, 273–276 (1997)

    Article  ADS  Google Scholar 

  22. Pierrehumbert, R. T. The hydrologic cycle in deep time climate problems. Nature 419, 191–198 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Koch, P. L. et al. in Causes and Consequences of Globally Warm Climates in the Early Paleogene (eds Wing, S. L., Gingerich, P. D., Schmitz, B. & Thomas, E.) 49–64 (Special Paper 369, Geological Society of America, Boulder, 2003)

    Book  Google Scholar 

  24. Fricke, H. C., Clyde, W. C., O'Neil, J. R. & Gingerich, P. D. Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming). Earth Planet. Sci. Lett. 160, 193–208 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Leavitt, S. W. & Newberry, T. Systematics of stable-carbon isotopic differences between gymnosperm and angiosperm trees. Plant Physiol. 11, 257–262 (1992)

    Google Scholar 

  26. Spero, H. J., Bijma, J., Lea, D. W. & Bernis, B. E. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390, 497–500 (1997)

    Article  ADS  CAS  Google Scholar 

  27. Arthur, M. A., Walter, D. E. & Claypool, G. E. Anomalous 13C enrichment in modern marine organic carbon. Nature 315, 216–218 (1985)

    Article  ADS  CAS  Google Scholar 

  28. Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B. & Bohaty, S. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309, 600–603 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Popp, B. et al. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim. Cosmochim. Acta 62, 69–77 (1998)

    Article  ADS  CAS  Google Scholar 

  30. Bujak, J. P. & Brinkhuis, H. in Late Paleocene - Early Eocene Biotic and Climatic Events in the Marine and Terrestrial Records (eds Aubry, M.-P., Lucas, S. G. & Berggren, W. A.) 277–295 (Columbia Univ. Press, New York, 1998)

    Google Scholar 

  31. Railsback, L. B., Anderson, T. F., Ackerly, S. C. & Cisne, J. L. Paleoceanographic modeling of temperature-salinity profiles from stable isotopic data. Paleoceanography 4, 585–591 (1989)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.P. thanks K. Turekian for conversations, and G. Bowen for comments and suggestions that substantially improved the manuscript. M.H. thanks the Purdue Research Foundation, ITaP, NCAR, NSF and L. C. Sloan for support for this research. A.S. thanks Utrecht Biogeology Centre for funding. H.B. thanks NWO, the Netherlands Organization for Scientific Research, and Utrecht University for enabling participation. We appreciate technical assistance provided by C. Valache, A. McLawhorn and G. Olack. This research used samples and data provided by the Integrated Ocean Drilling Program (IODP), which is sponsored by the US NSF and participating countries under the management of Joint Oceanographic Institutions (JOI) Inc.

Author information

Author notes

  1. Mark Pagani, Nikolai Pedentchouk, Matthew Huber and Mahito Watanabe: *These authors contributed equally to this work

Authors and Affiliations

  1. Department of Geology and Geophysics, Yale University, PO Box 208109, Connecticut, 06520, New Haven, USA

    Mark Pagani & Nikolai Pedentchouk

  2. Earth and Atmospheric Sciences Department and the Purdue Climate Change Research Center, Purdue University, West Lafayette, 550 Stadium Mall Drive, Indiana, 47906, USA

    Matthew Huber

  3. Palaeoecology, Institute of Environmental Biology, Utrecht University, Laboratory of Palaeobotany and Palynology, Budapestlaan 4, 3584 CD, Utrecht, The Netherlands

    Appy Sluijs & Henk Brinkhuis

  4. Department of Marine Biogeochemistry and Toxicology, Royal Netherlands Institute for Sea Research (NIOZ), PO Box 59, 1790 AB, Den Burg, Texel, The Netherlands

    Stefan Schouten & Jaap S. Sinninghe Damsté

  5. Faculty of Geosciences, Department of Earth Sciences, Utrecht University, Utrecht, Budapestlaan 4, 3584 CD, The Netherlands

    Jaap S. Sinninghe Damsté

  6. Department of Earth Sciences, Rice University, Houston, 6100 Main Street, Texas, 77005, USA

    Gerald R. Dickens

  7. Department of Geology and Geochemistry, Stockholm University, Stockholm, SE-10691, Sweden

    Jan Backman

  8. Geological Sciences, Brown University, Providence, 324 Brook Street, PO Box 1846, Rhode Island, 02912-1846, USA

    Steve Clemens

  9. US Geological Survey, Eastern Earth Surface Processes Team, Reston, 926A USGS National Center, Virginia, 20192, USA

    Thomas Cronin

  10. Department de Géologie et Océanographie, Université Bordeaux 1, Avenue des facultés, c/o Bernei Housen, 33405, Talence Cedex, France

    Frédérique Eynaud

  11. Department of Geophysics, CEREGE (CNRS)/University of Aix-Marseille 3, Aix-en-Provence Cedex, BP80, 13545 4, France

    Jérôme Gattacceca

  12. Department of Geology and Geochemistry, Stockholm University, Stockholm, 10691, Sweden

    Martin Jakobsson

  13. Department of Earth and Environmental Sciences, Faculty of Science, Yamagata University, Yamagata, 1-4-12 Kojirakawa-machi, 990-8560, Japan

    Ric Jordan

  14. Department of Earth Sciences, University College London, London, Gower Street, WC1E 6BT, UK

    Michael Kaminski

  15. Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, Narragansett, South Ferry Road, Rhode Island, 02882, USA

    John King, Matthew O'Regan & David C. Smith

  16. Norwegian Polar Institute, Polar Environmental Center, Tromsø, N-9296, Norway

    Nalân Koc

  17. Department of Earth Sciences, Boston University, 685 Commonwealth Avenue, Massachusetts, 02215, Boston, USA

    Nahysa C. Martinez

  18. British Geological Survey, Murchison House, Edinburgh, West Mains Road, EH9 3LA, UK

    David McInroy

  19. Geological Sciences, University of Michigan, Ann Arbor, Michigan, 48109-1063, USA

    Theodore C. Moore Jr

  20. Department of Earth and Planetary Sciences, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, 812-8581, Higashi-ku, Fukuoka, Japan

    Jonaotaro Onodera, Domenico Rio & Kozo Takahashi

  21. School of Ocean and Earth Science, University of Southampton, Southampton Oceanography Centre, Southampton, European Way, SO14 3ZH, UK

    Heiko Pälike

  22. Department of Geography and Environment, School of Geosciences, University of Aberdeen, Aberdeen, Elphinstone Road, AB24 3UF, UK

    Brice Rea

  23. Department of Geology, Paleontology and Geophysics, University of Padova, Via Giotto 1, I-35137, Padova, Italy

    Domenico Rio

  24. Institute for Research on Earth Evolution (IFREE), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Natsushima-cho 2-15, 237-0061, Japan

    Tatsuhiko Sakamoto

  25. Department of Geology and Environmental Science, MSC7703, James Madison University, Harrisonburg, Virginia, 22807, USA

    Kristen E. K. St John

  26. Institute of Life and Environmental Science, University of Tsukuba, Ibaraki, Tsukuba, Tennoudai 1-1-1, 305-8572, Japan

    Itsuki Suto

  27. Institute of Geology and Paleontology, Graduate School of Science, Tohoku University, Aramaki, Aoba, Aoba-ku, Sendai City, 980-8578, Japan

    Noritoshi Suzuki

  28. Institute of Geoscience, National Institute of Advanced Industrial Science, and Technology (Geological Survey of Japan), AIST Tsukuba Central 7, Higashi-1-1-1, 305-8567, Ibaraki, Tsukuba, Japan

    Mahito Watanabe

  29. Graduate School of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, Kita-10, Nishi-5, 060-0810, Japan

    Masanobu Yamamoto

Authors

  1. Mark Pagani

    You can also search for this author in PubMed Google Scholar

  2. Nikolai Pedentchouk

    You can also search for this author in PubMed Google Scholar

  3. Matthew Huber

    You can also search for this author in PubMed Google Scholar

  4. Appy Sluijs

    You can also search for this author in PubMed Google Scholar

  5. Stefan Schouten

    You can also search for this author in PubMed Google Scholar

  6. Henk Brinkhuis

    You can also search for this author in PubMed Google Scholar

  7. Jaap S. Sinninghe Damsté

    You can also search for this author in PubMed Google Scholar

  8. Gerald R. Dickens

    You can also search for this author in PubMed Google Scholar

Consortia

Expedition 302 Scientists

  • Jan Backman
  • , Steve Clemens
  • , Thomas Cronin
  • , Frédérique Eynaud
  • , Jérôme Gattacceca
  • , Martin Jakobsson
  • , Ric Jordan
  • , Michael Kaminski
  • , John King
  • , Nalân Koc
  • , Nahysa C. Martinez
  • , David McInroy
  • , Theodore C. Moore Jr
  • , Matthew O'Regan
  • , Jonaotaro Onodera
  • , Heiko Pälike
  • , Brice Rea
  • , Domenico Rio
  • , Tatsuhiko Sakamoto
  • , David C. Smith
  • , Kristen E. K. St John
  • , Itsuki Suto
  • , Noritoshi Suzuki
  • , Kozo Takahashi
  • , Mahito Watanabe
  •  & Masanobu Yamamoto

Corresponding author

Correspondence to Mark Pagani.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Additional information

A list of authors and affiliations appears at the end of the paper

Supplementary information

About this article

Cite this article

Pagani, M., Pedentchouk, N., Huber, M. et al. Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum. Nature 442, 671–675 (2006). https://doi.org/10.1038/nature05043

Download citation

  • Received: 06 July 2005

  • Accepted: 03 July 2006

  • Issue Date: 10 August 2006

  • DOI: https://doi.org/10.1038/nature05043