nature.com

The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star - Nature

  • ️Pritchet, Christopher J.
  • ️Thu Sep 21 2006

Abstract

The accelerating expansion of the Universe, and the need for dark energy, were inferred from observations1,2 of type Ia supernovae. There is a consensus that type Ia supernovae are thermonuclear explosions that destroy carbon–oxygen white dwarf stars that have accreted matter from a companion star3, although the nature of this companion remains uncertain. These supernovae are thought to be reliable distance indicators because they have a standard amount of fuel and a uniform trigger: they are predicted to explode when the mass of the white dwarf nears the Chandrasekhar mass4 of 1.4 solar masses (M). Here we show that the high-redshift supernova SNLS-03D3bb has an exceptionally high luminosity and low kinetic energy that both imply a super-Chandrasekhar-mass progenitor. Super-Chandrasekhar-mass supernovae should occur preferentially in a young stellar population, so this may provide an explanation for the observed trend that overluminous type Ia supernovae occur only in ‘young’ environments5,6. As this supernova does not obey the relations that allow type Ia supernovae to be calibrated as standard candles, and as no counterparts have been found at low redshift, future cosmology studies will have to consider possible contamination from such events.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Perlmutter, S. et al. Measurements of Omega and Lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999)

    Article  ADS  Google Scholar 

  2. Riess, A. G. et al. Observational evidence from supernovae for an accelerating Universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)

    Article  ADS  Google Scholar 

  3. Hoyle, F. & Fowler, W. A. Nucleosynthesis in supernovae. Astrophys. J. 132, 565–590 (1960)

    Article  ADS  CAS  Google Scholar 

  4. Chandrasekhar, S. The maximum mass of ideal white dwarfs. Astrophys. J. 74, 81–82 (1931)

    Article  ADS  Google Scholar 

  5. Sullivan, M. et al. Rates and properties of type Ia supernovae as a function of mass and star-formation in their host galaxies. Astrophys. J. (in the press); preprint at http://www.arXiv.org/astro-ph/0605455 (2006)

  6. Hamuy, M. et al. The absolute luminosities of the Calan/Tololo type IA supernovae. Astron. J. 112, 2391–2397 (1996)

    Article  ADS  Google Scholar 

  7. Astier, P. et al. The Supernova Legacy Survey: measurement of ΩM, ΩΛ and w from the first year data set. Astron. Astrophys. 447, 31–48 (2006)

    Article  ADS  Google Scholar 

  8. Howell, D. A., Höflich, P., Wang, L. & Wheeler, J. C. Evidence for asphericity in a subluminous type Ia supernova: spectropolarimetry of SN 1999by. Astrophys. J. 556, 302–321 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Kasen, D., Nugent, P., Thomas, R. C. & Wang, L. Could there be a hole in type Ia supernovae? Astrophys. J. 610, 876–887 (2004)

    Article  ADS  Google Scholar 

  10. Phillips, M. M. The absolute magnitudes of type IA supernovae. Astrophys. J. Lett. 413, L105–L108 (1993)

    Article  ADS  Google Scholar 

  11. Colgate, S. A. & McKee, C. Early supernova luminosity. Astrophys. J. 157, 623–644 (1969)

    Article  ADS  CAS  Google Scholar 

  12. Woosley, S. E. & Weaver, T. A. The physics of supernova explosions. Annu. Rev. Astron. Astrophys. 24, 205–253 (1986)

    Article  ADS  CAS  Google Scholar 

  13. Branch, D. The Hubble constant from nickel radioactivity in type IA supernovae. Astrophys. J. 392, 35–40 (1992)

    Article  ADS  CAS  Google Scholar 

  14. Nomoto, K., Thielemann, F.-K. & Yokoi, K. Accreting white dwarf models of Type I supernovae. III—Carbon deflagration supernovae. Astrophys. J. 286, 644–658 (1984)

    Article  ADS  CAS  Google Scholar 

  15. Hoflich, P. Analysis of the type IA supernova SN 1994D. Astrophys. J. 443, 89–108 (1995)

    Article  ADS  Google Scholar 

  16. Khokhlov, A., Mueller, E. & Hoeflich, P. Light curves of type IA supernova models with different explosion mechanisms. Astron. Astrophys. 270, 223–248 (1993)

    ADS  CAS  Google Scholar 

  17. Fisher, A., Branch, D., Hatano, K. & Baron, E. On the spectrum and nature of the peculiar type IA supernova 1991T. Mon. Not. R. Astron. Soc. 304, 67–74 (1999)

    Article  ADS  CAS  Google Scholar 

  18. Yoon, S.-C. & Langer, N. On the evolution of rapidly rotating massive white dwarfs towards supernovae or collapses. Astron. Astrophys. 435, 967–985 (2005)

    Article  ADS  Google Scholar 

  19. Tutukov, A. V. & Yungelson, L. R. Merging of binary white dwarfs neutron stars and black-holes under the influence of gravitational wave radiation. Mon. Not. R. Astron. Soc. 268, 871–879 (1994)

    Article  ADS  CAS  Google Scholar 

  20. Howell, D. A. The progenitors of subluminous type Ia supernovae. Astrophys. J. Lett. 554, L193–L196 (2001)

    Article  ADS  Google Scholar 

  21. Arnett, W. D. Type I supernovae. I—Analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982)

    Article  ADS  CAS  Google Scholar 

  22. Arnett, W. D., Branch, D. & Wheeler, J. C. Hubble's constant and exploding carbon-oxygen white dwarf models for type I supernovae. Nature 314, 337–338 (1985)

    Article  ADS  CAS  Google Scholar 

  23. Nugent, P. et al. Low Hubble constant from the physics of type Ia supernovae. Phys. Rev. Lett. 75, 394–397 (1995)

    Article  ADS  CAS  Google Scholar 

  24. Nugent, P. E. Non-local thermodynamic equilibrium spectrum synthesis of type IA supernovae. PhD thesis, Univ. Oklahoma (1997)

  25. Conley, A. et al. The rise time of type Ia supernovae from the Supernova Legacy Survey. Astron. J. (in the press); preprint at http://www.arXiv.org/astro-ph/0607363 (2006)

  26. Benetti, S. et al. The diversity of type Ia supernovae: evidence for systematics? Astrophys. J. 623, 1011–1016 (2005)

    Article  ADS  Google Scholar 

  27. Nugent, P., Kim, A. & Perlmutter, S. K-corrections and extinction corrections for type Ia supernovae. Publ. Astron. Soc. Pacif. 114, 803–819 (2002)

    Article  ADS  Google Scholar 

  28. Bessell, M. S. UBVRI passbands. Publ. Astron. Soc. Pacif. 102, 1181–1199 (1990)

    Article  ADS  Google Scholar 

  29. Fisher, A., Branch, D., Nugent, P. & Baron, E. Evidence for a high-velocity carbon-rich layer in the type IA SN 1990N. Astrophys. J. Lett. 481, L89–L92 (1997)

    Article  ADS  CAS  Google Scholar 

  30. Marion, G. H. et al. Low carbon abundance in type Ia supernovae. Astrophys. J. 645, 1392–1401 (2006)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

SNLS relies on observations with MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada–France–Hawaii Telescope (CFHT). We used data products from the Canadian Astronomy Data Centre as part of the CFHT Legacy Survey. Some data were obtained at the W. M. Keck Observatory. We acknowledge support from NSERC, NERSC, CIAR, CNRS/IN2P3, CNRS/INSU, CEA and the DOE.

Author information

Authors and Affiliations

  1. Department of Astronomy and Astrophysics, University of Toronto, 60 St George Street, Ontario, M5S 3H8, Toronto, Canada

    D. Andrew Howell, Mark Sullivan, Alexander J. Conley, Raymond G. Carlberg & Kathryn M. Perrett

  2. Lawrence Berkeley National Laboratory, Mail Stop 50-232, 1 Cyclotron Road, California, 94720, Berkeley, USA

    Peter E. Nugent

  3. California Institute of Technology, East California Blvd, California, 91125, Pasadena, USA

    Richard S. Ellis

  4. DAPNIA/Service d'Astrophysique, CEA/Saclay, 91191 Cedex, Gif-sur-Yvette, France

    Damien Le Borgne

  5. LPNHE, CNRS-IN2P3 and University of Paris VI and VII, 75005, Paris, France

    Julien Guy & Reynald Pain

  6. Department of Physics and Astronomy, University of Victoria, P O Box 3055, British Columbia, V8W 3P6, Victoria, Canada

    David Balam, Eric Y. Hsiao, James D. Neill & Christopher J. Pritchet

  7. LAM CNRS, BP8, Traverse du Siphon, 13376 Cedex 12, Marseille, France

    Stephane Basa

  8. CPPM, CNRS-IN2P3 and University Aix Marseille II, Case 907, 13288 Cedex 9, Marseille, France

    Dominique Fouchez

  9. University of Oxford Astrophysics, Denys Wilkinson Building, Keble Road, OX1 3RH, Oxford, UK

    Isobel M. Hook

Authors

  1. D. Andrew Howell

    You can also search for this author in PubMed Google Scholar

  2. Mark Sullivan

    You can also search for this author in PubMed Google Scholar

  3. Peter E. Nugent

    You can also search for this author in PubMed Google Scholar

  4. Richard S. Ellis

    You can also search for this author in PubMed Google Scholar

  5. Alexander J. Conley

    You can also search for this author in PubMed Google Scholar

  6. Damien Le Borgne

    You can also search for this author in PubMed Google Scholar

  7. Raymond G. Carlberg

    You can also search for this author in PubMed Google Scholar

  8. Julien Guy

    You can also search for this author in PubMed Google Scholar

  9. David Balam

    You can also search for this author in PubMed Google Scholar

  10. Stephane Basa

    You can also search for this author in PubMed Google Scholar

  11. Dominique Fouchez

    You can also search for this author in PubMed Google Scholar

  12. Isobel M. Hook

    You can also search for this author in PubMed Google Scholar

  13. Eric Y. Hsiao

    You can also search for this author in PubMed Google Scholar

  14. James D. Neill

    You can also search for this author in PubMed Google Scholar

  15. Reynald Pain

    You can also search for this author in PubMed Google Scholar

  16. Kathryn M. Perrett

    You can also search for this author in PubMed Google Scholar

  17. Christopher J. Pritchet

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to D. Andrew Howell.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Methods, Supplementary Figure, Supplementary Table and additional references. (PDF 141 kb)

About this article

Cite this article

Andrew Howell, D., Sullivan, M., Nugent, P. et al. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. Nature 443, 308–311 (2006). https://doi.org/10.1038/nature05103

Download citation

  • Received: 07 April 2006

  • Accepted: 18 July 2006

  • Issue Date: 21 September 2006

  • DOI: https://doi.org/10.1038/nature05103

Editorial Summary

Candle in the wind

Type Ia supernovae are used as cosmological distance indicators. It is through them that the accelerating expansion of the Universe was detected, and with it the implied existence of dark energy. Their presumed reliability as 'standard candles' stems from the fact they have a fixed amount of fuel and a uniform trigger: they are predicted to explode when the mass of the white dwarf nears 1.4 solar masses, the 'Chandrasekhar' mass. Howell et al. now show that the high-redshift supernova SNLS-03D3bb does not play by these rules: its exceptionally high luminosity and low kinetic energy imply a super-Chandrasekhar mass progenitor. So future cosmological studies may need to consider possible contamination from such events when calculating distances.