dx.doi.org

Defining the Anthropocene - Nature

  • ️Maslin, Mark A.
  • ️Wed Mar 11 2015
  • Crutzen, P. J. & Stoermer, E. F. The Anthropocene. IGBP Global Change Newsl. 41, 17–18 (2000)This paper suggested that the Holocene has ended and the Anthropocene has begun, starting the contemporary increase in the usage of the term Anthropocene.

    Google Scholar 

  • Crutzen, P. J. Geology of mankind. Nature 415, 23 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Steffen, W., Crutzen, P. J. & McNeill, J. R. The Anthropocene: are humans now overwhelming the great forces of nature. Ambio 36, 614–621 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Zalasiewicz, J., Williams, M., Haywood, A. & Ellis, M. The Anthropocene: a new epoch of geological time? Phil. Trans. R. Soc. Lond. A 369, 835–841 (2011)

    Article  ADS  Google Scholar 

  • Dalby, S. Biopolitics and climate security in the Anthropocene. Geoforum 49, 184–192 (2013)

    Article  Google Scholar 

  • Anon. The Anthropocene: a man-made world. The Economist May 26 (2011); http://www.economist.com/node/18741749

  • Zalasiewicz, J. The Earth After Us: What Legacy Will Humans Leave in the Rocks? (Oxford University Press, 2008)

    Google Scholar 

  • Autin, W. J. & Holbrook, J. M. Is the Anthropocene an issue of stratigraphy or pop culture? GSA Today 22, 60–61 (2012)

    Article  Google Scholar 

  • Gibbard, P. L. & Walker, M. J. C. The term ‘Anthropocene’ in the context of formal geological classification. Geol. Soc. Lond. Spec. Publ. 395, 29–37 (2014)This paper presents a view that there is not currently enough evidence to formally ratify a new Anthropocene Epoch.

    Article  ADS  Google Scholar 

  • Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. The Geologic Time Scale 2012 (Elsevier, 2012)This book is the latest GTS, including the formal assessments of Earth’s history divided into epochs, periods, eras and eons.

    Google Scholar 

  • Finney, S. C. The ‘Anthropocene’ as a ratified unit in the ICS International Chronostratigraphic Chart: fundamental issues that must be addressed by the Task Group. Geol. Soc. Lond. Spec. Publ. 395, 23–28 (2014)This paper details the requirements and questions that will need to be addressed by the initial committee that will recommend whether or not an Anthropocene epoch is to be formally defined.

    Article  ADS  Google Scholar 

  • Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ciais, P. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) Ch. 6, 465–570 (Cambridge Univ. Press, 2013)

  • Masson-Delmotte, V. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) Ch. 5, 383–464 (Cambridge Univ. Press, 2013)

  • Wolff, E. W. Ice Sheets and the Anthropocene. Geol. Soc. Lond. Spec. Publ. 395, 255–263 (2014)

    Article  ADS  Google Scholar 

  • InternationalGeosphere-Biosphere Programme, Intergovernmental Oceanographic Commission, Scientific Committee on Oceanic Research. Ocean Acidification Summary for Policymakers – Third Symposium on the Ocean in a High-CO 2 World (International Geosphere-Biosphere Programme, 2013) http://ocean-acidification.net/for-policymakers/

  • Running, S. W. A measurable planetary boundary for the biosphere. Science 337, 1458–1459 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Krausmann, F. et al. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl Acad. Sci. USA 110, 10324–10329 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnosky, A. D. et al. Has the Earth's sixth mass extinction already arrived? Nature 471, 51–57 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Thomas, C. D. The Anthropocene could raise biological diversity. Nature 502, 7 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Baiser, B., Olden, J. D., Record, S., Lockwood, J. L. & McKinney, M. L. Pattern and process of biotic homogenization in the New Pangaea. Proc. R. Soc. Lond. B 279, 4772–4777 (2012)

    Article  Google Scholar 

  • Palumbi, S. R. Humans as the world’s greatest evolutionary force. Science 293, 1786–1790 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Darimont, C. T. et al. Human predators outpace other agents of trait change in the wild. Proc. Natl Acad. Sci. USA 106, 952–954 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabashnik, B. E., Mota-Sanchez, D., Whalon, M. E., Hollingworth, R. M. & Carriere, Y. Defining terms for proactive management of resistance to Bt crops and pesticides. J. Econ. Entomol. 107, 496–507 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Stuart, Y. E. et al. Rapid evolution of a native species following invasion by a congener. Science 346, 463–466 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Davis, R. V. Inventing the present: historical roots of the Anthropocene. Earth Sci. Hist. 30, 63–84 (2011)This paper investigates and reviews the history of the use of the terms ‘Holocene’ and ‘Anthropocene’, showing that the Holocene includes humans in its first nineteenth-century definition.

    Article  Google Scholar 

  • Rudwick, M. S. J. Bursting the Limits of Time: The Reconstruction of Geohistory in the Age of Revolution (University of Chicago Press, 2005)

    Book  Google Scholar 

  • Jenkyn, T. W. Lessons in Geology XLVI. Chapter IV. On the effects of organic agents on the Earth's crust. Popular Educator 4, 139–141 (1854)

    Google Scholar 

  • Jenkyn, T. W. Lessons in Geology XLIX. Chapter V. On the classification of rocks section IV. On the tertiaries Popular Educator. 4, 312–316 (1854)

  • Hansen, P. H. The Summits of Modern Man: Mountaineering after the Enlightenment (Harvard University Press, 2013)

    Book  Google Scholar 

  • Haughton, S. Manual of Geology (Longman, 1865)

    Google Scholar 

  • Stoppani, A. Corso di Geologia Vol. II (G. Bernardoni e G. Brigola, 1873)

    Google Scholar 

  • Dana, J. D. Manual of Geology (Theodore Bliss and Co., 1863)

    Google Scholar 

  • Le Conte, J. On critical periods in the history of the Earth and their relation to evolution; and on the Quaternary as such a period. Am. J. Sci. 14, 99–114 (1877)

    Article  ADS  Google Scholar 

  • Lyell, C. Principles of Geology Volumes I, II and III (University of Chicago Press, 1990); originally published by John Murray, 1830–1833

  • Shantser, E. V. in Great Soviet Encyclopedia Vol. 2 (ed. Prokhorov, A. M. ) 139–144 (Macmillan, 1979)

    Google Scholar 

  • Vernadsky, W. I. Biosphere and Noosphere. Am. Sci. 33, 1–12 (1945)

    Google Scholar 

  • Walker, M. et al. Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records. J. Quat. Sci. 24, 3–17 (2009)

    Article  Google Scholar 

  • Steffen, W., Grinevald, J., Crutzen, P. & McNeill, J. The Anthropocene: conceptual and historical perspectives. Phil. Trans. R. Soc. Lond. A 369, 842–867 (2011)

    Article  ADS  Google Scholar 

  • Zalasiewicz, J. et al. Stratigraphy of the Anthropocene. Phil. Trans. R. Soc. Lond. A 369, 1036–1055 (2011)

    Article  ADS  CAS  Google Scholar 

  • Waters, C. N., Zalasiewicz, J. A., Williams, M., Ellis, M. A. & Snelling, A. M. A stratigraphical basis for the Anthropocene? Geol. Soc. Lond. Spec. Publ. 395, 1–21 (2014)This paper reviews various stratigraphic markers relevant to defining the Anthropocene, with an up-to-date collation of the many markers coincident with the Industrial Revolution and the Great Acceleration.

    Article  ADS  Google Scholar 

  • Glikson, A. Fire and human evolution: the deep-time blueprints of the Anthropocene. Anthropocene 3, 89–92 (2013)

    Article  Google Scholar 

  • Ruddiman, W. F. The Anthropocene. Annu. Rev. Earth Planet. Sci. 41, 45–68 (2013)This paper summarizes the data and arguments that human activity altered CO 2 and CH 4 emissions thousands of years ago, leading to a delayed next glaciation, known as the Early Anthropogenic Hypothesis.

    Article  ADS  CAS  Google Scholar 

  • Foley, S. F. et al. The Palaeoanthropocene—the beginnings of anthropogenic environmental change. Anthropocene 3, 83–88 (2013)

    Article  Google Scholar 

  • Balter, M. Archaeologists say the ‘Anthropocene' is here—but it began long ago. Science 340, 261–262 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Fischer-Kowalski, M., Krausmann, F. & Pallua, I. A sociometabolic reading of the Anthropocene: modes of subsistence, population size and human impact on Earth. Anthropocene Rev. 1, 8–33 (2014)This paper takes an alternative view of the Anthropocene, considering human energy sources, and posits two transitions, to an agricultural mode, about 10,000 yr  bp , and to an industrial mode, which begins after 1500.

    Article  Google Scholar 

  • Zalasiewicz, J., Williams, M. & Waters, C. N. Can an Anthropocene series be defined and recognized? Geol. Soc. Lond. Spec. Publ. 395, 39–53 (2014)

    Article  ADS  Google Scholar 

  • Roebroeks, W. & Villa, P. On the earliest evidence for habitual use of fire in Europe. Proc. Natl Acad. Sci. USA 108, 5209–5214 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnosky, A. D. Palaeontological evidence for defining the Anthropocene. Geol. Soc. Lond. Spec. Publ. 395, 149–165 (2014)

    Article  ADS  Google Scholar 

  • Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of Late Pleistocene extinctions on the continents. Science 306, 70–75 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–364 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis, E. C. et al. Used planet: a global history. Proc. Natl Acad. Sci. USA 110, 7978–7985 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Certini, G. & Scalenghe, R. Anthropogenic soils are the golden spikes for the Anthropocene. Holocene 21, 1269–1274 (2011)

    Article  ADS  Google Scholar 

  • Gale, S. J. & Hoare, P. G. The stratigraphic status of the Anthropocene. Holocene 22, 1491–1494 (2012)

    Article  ADS  Google Scholar 

  • Tzedakis, P. C., Channell, J. E. T., Hodell, D. A., Kleiven, H. F. & Skinner, L. C. Determining the natural length of the current interglacial. Nature Geosci. 5, 138–141 (2012)

    Article  ADS  CAS  Google Scholar 

  • Broecker, W. C. & Stocker, T. F. The Holocene CO2 rise: Anthropogenic or natural? Eos 87, 27–29 (2006)

    Article  ADS  Google Scholar 

  • Stocker, B. D., Strassmann, K. & Joos, F. Sensitivity of Holocene atmospheric CO2 and the modern carbon budget to early human land use: analyses with a process-based model. Biogeosciences 8, 69–88 (2011)

    Article  ADS  CAS  Google Scholar 

  • Kaplan, J. O. et al. Holocene carbon emissions as a result of anthropogenic land cover change. Holocene 21, 775–791 (2011)

    Article  ADS  Google Scholar 

  • Blunier, T., Chappellaz, J., Schwander, J., Stauffer, B. & Raynaud, D. Variations in atmospheric methane concentration during the Holocene epoch. Nature 374, 46–49 (1995)

    Article  ADS  CAS  Google Scholar 

  • Sapart, C. J. et al. Natural and anthropogenic variations in methane sources during the past two millennia. Nature 490, 85–88 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Singarayer, J. S., Valdes, P. J., Friedlingstein, P., Nelson, S. & Beerling, D. J. Late Holocene methane rise caused by orbitally controlled increase in tropical sources. Nature 470, 82–85 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Diamond, J. Guns, Germs and Steel: A Short History of Everybody for the Last 13,000 Years (Chatto and Windus, 1997)

    Google Scholar 

  • Mann, C. C. 1493: How the Ecological Collision of Europe and the Americas Gave Rise to the Modern World (Granta, 2011)

    Google Scholar 

  • Crosby, A. W. The Columbian Exchange: Biological and Cultural Consequences of 1492 30 yr edn (Preager, 2003)

    Google Scholar 

  • Mercuri, A. M. et al. A marine/terrestrial integration for mid-late Holocene vegetation history and the development of the cultural landscape in the Po valley as a result of human impact and climate change. Vegetat. Hist. Archaeobot. 21, 353–372 (2012)

    Article  Google Scholar 

  • Piperno, D. R. Identifying crop plants with phytoliths (and starch grains) in Central and South America: a review and an update of the evidence. Quat. Int. 193, 146–159 (2009)

    Article  Google Scholar 

  • Zalasiewicz, J. & Williams, M. The Anthropocene: a comparison with the Ordovician-Silurian boundary. Rendiconti Lincei-Scienze Fisiche E Naturali 25, 5–12 (2014)

    Article  Google Scholar 

  • Denevan, W. M. The Native Population of the Americas in 1492 2nd edn (University of Wisconsin Press, 1992)

    Google Scholar 

  • Mann, C. C. 1491: New Revelations of the Americas Before Columbus (Vintage, 2005)

    Google Scholar 

  • Nevle, R. J. & Bird, D. K. Effects of syn-pandemic fire reduction and reforestation in the tropical Americas on atmospheric CO2 during European conquest. Palaeogeogr. Palaeoclimatol. Palaeoecol. 264, 25–38 (2008)This paper presents a synthesis of data computing the impacts of the rapid 1492–1650 reduction in population across the Americas and the carbon uptake implications.

    Article  Google Scholar 

  • Dull, R. A. et al. The Columbian encounter and the Little Ice Age: abrupt land use change, fire, and greenhouse forcing. Ann. Assoc. Am. Geogr. 100, 755–771 (2010)

    Article  Google Scholar 

  • Nevle, R. J., Bird, D. K., Ruddiman, W. F. & Dull, R. A. Neotropical human-landscape interactions, fire, and atmospheric CO2 during European conquest. Holocene 21, 853–864 (2011)

    Article  ADS  Google Scholar 

  • Ahn, J. et al. Atmospheric CO2 over the last 1000 years: a high-resolution record from the West Antarctic Ice Sheet (WAIS) divide ice core. Glob. Biogeochem. Cycles 26, GB2027 (2012)

    Article  ADS  CAS  Google Scholar 

  • Rubino, M. et al. A revised 1000 year atmospheric delta C-13-CO2 record from Law Dome and South Pole, Antarctica. J. Geophys. Res. D 118, 8482–8499 (2013)

    ADS  CAS  Google Scholar 

  • MacFarling Meure, C. et al. Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys. Res. Lett. 33, L14810 (2006)

    Article  ADS  CAS  Google Scholar 

  • Etheridge, D. M., Steele, L. P., Francey, R. J. & Langenfelds, R. L. Atmospheric methane between 1000 AD and present: evidence of anthropogenic emissions and climatic variability. J. Geophys. Res. D 103, 15979–15993 (1998)

    Article  ADS  CAS  Google Scholar 

  • Smith, V. C. Volcanic markers for dating the onset of the Anthropocene. Geol. Soc. Lond. Spec. Publ. 395, 283–299 (2014)

    Article  ADS  Google Scholar 

  • de Silva, S. L. & Zielinski, G. A. Global influence of the AD1600 eruption of Huaynaputina, Peru. Nature 393, 455–458 (1998)

    Article  ADS  CAS  Google Scholar 

  • Thompson, L. G. et al. Annually resolved ice core records of tropical climate variability over the past 1800 Years. Science 340, 945–950 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Power, M. J. et al. Climatic control of the biomass-burning decline in the Americas after AD 1500. Holocene 23, 3–13 (2013)

    Article  ADS  Google Scholar 

  • Wang, Z., Chappellaz, J., Park, K. & Mak, J. E. Large variations in Southern Hemisphere biomass burning during the last 650 years. Science 330, 1663–1666 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ferretti, D. F. et al. Unexpected changes to the global methane budget over the past 2000 years. Science 309, 1714–1717 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Mischler, J. A. et al. Carbon and hydrogen isotopic composition of methane over the last 1000 years. Glob. Biogeochem. Cycles 23, GB4024 (2009)

    Article  ADS  CAS  Google Scholar 

  • Mitchell, L. E., Brook, E. J., Sowers, T., McConnell, J. R. & Taylor, K. Multidecadal variability of atmospheric methane, 1000–1800 CE. J. Geophys. Res. 116, G02007 (2011)

    Article  ADS  Google Scholar 

  • Bush, M. B. & Colinvaux, P. A. Tropical forest disturbance: Paleoecological records from Darien, Panama. Ecology 75, 1761–1768 (1994)

    Article  Google Scholar 

  • Kinnard, C. et al. Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature 479, 509–512 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Neukom, R. et al. Inter-hemispheric temperature variability over the past millennium. Nature Clim. Change 4, 362–367 (2014)This paper synthesizes paleoclimate records from the southern and northern hemispheres, showing one globally synchronous cool period (1594–1677) and one globally synchronous warm period (1965 onwards) within the last 1,000 years.

    Article  ADS  Google Scholar 

  • Pomeranz, K. The Great Divergence: China, Europe, and the Making of the Modern World Economy (Princeton University Press, 2000)

    Google Scholar 

  • Wallerstein, I. The Modern World-System I: Capitalist Agriculture and the Origins of the European World-Economy in the Sixteenth Century (Academic Press, 1974)

    Google Scholar 

  • Killick, D. & Fenn, T. Archaeometallurgy: the study of preindustrial mining and metallurgy. Annu. Rev. Anthropol. 41, 559–575 (2012)

    Article  Google Scholar 

  • Cooke, C. A., Balcom, P. H., Biester, H. & Wolfe, A. P. Over three millennia of mercury pollution in the Peruvian Andes. Proc. Natl Acad. Sci. USA 106, 8830–8834 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, S. M., Candelone, J. P., Patterson, C. C. & Boutron, C. F. History of ancient copper smelting pollution during Roman and medieval times recorded in Greenland ice. Science 272, 246–249 (1996)

    Article  ADS  CAS  Google Scholar 

  • Rose, N. L. & Appleby, P. G. Regional applications of lake sediment dating by spheroidal carbonaceous particle analysis I: United Kingdom. J. Paleolimnol. 34, 349–361 (2005)

    Article  ADS  Google Scholar 

  • Snowball, I., Hounslow, M. W. & Nilsson, A. Geomagnetic and mineral magnetic characterization of the Anthropocene. Geol. Soc. Lond. Spec. Publ. 395, 119–141 (2014)

    Article  ADS  Google Scholar 

  • Wolfe, A. P. et al. Stratigraphic expressions of the Holocene-Anthropocene transition revealed in sediments from remote lakes. Earth Sci. Rev. 116, 17–34 (2013)

    Article  ADS  CAS  Google Scholar 

  • Holtgrieve, G. W. et al. A coherent signature of Anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere. Science 334, 1545–1548 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Gałuszka, A., Migaszewski, Z. M. & Zalasiewicz, J. Assessing the Anthropocene with geochemical methods. Geol. Soc. Lond. Spec. Publ. 395, 221–238 (2014)

    Article  ADS  Google Scholar 

  • Falkowski, P. et al. The global carbon cycle: a test of our knowledge of Earth as a system. Science 290, 291–296 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Fairchild, I. J. & Frisia, S. Definition of the Anthropocene: a view from the underworld. Geol. Soc. Lond. Spec. Publ. 395, 239–254 (2014)

    Article  ADS  Google Scholar 

  • Hua, Q. Radiocarbon: a chronological tool for the recent past. Quat. Geochronol. 4, 378–390 (2009)

    Article  Google Scholar 

  • Harnisch, J. & Eisenhauer, A. Natural CF4 and SF6 on Earth. Geophys. Res. Lett. 25, 2401–2404 (1998)

    Article  ADS  CAS  Google Scholar 

  • Butler, J. H. et al. A record of atmospheric halocarbons during the twentieth century from polar firn air. Nature 399, 749–755 (1999)

    Article  ADS  CAS  Google Scholar 

  • Rakowski, A. Z. et al. Radiocarbon method in environmental monitoring of CO2 emission. Nucl. Instrum. Methods Phys. Res. B 294, 503–507 (2013)

    Article  ADS  CAS  Google Scholar 

  • Ketterer, M. E. et al. Resolving global versus local/regional Pu sources in the environment using sector ICP-MS. J. Anal. At. Spectrom. 19, 241–245 (2004)

    Article  CAS  Google Scholar 

  • Fehn, U. et al. Determination of natural and anthropogenic I-129 in marine sediments. Geophys. Res. Lett. 13, 137–139 (1986)

    Article  ADS  CAS  Google Scholar 

  • Hansen, V., Roos, P., Aldahan, A., Hou, X. & Possnert, G. Partition of iodine (I-129 and I-127) isotopes in soils and marine sediments. J. Environ. Radioact. 102, 1096–1104 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Schurer, A. P., Hegerl, G. C., Mann, M. E., Tett, S. F. B. & Phipps, S. J. Separating forced from chaotic climate variability over the past millennium. J. Clim. 26, 6954–6973 (2013)

    Article  ADS  Google Scholar 

  • Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: the Great Acceleration. Anthropocene Rev http://dx.doi.org/10.1177/2053019614564785 (in the press)

  • Zalasiewicz, J. et al. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quat. Int http://dx.doi.org/10.1016/j.quaint.2014.11.045 (in the press)

  • van der Pluijm, B. Hello Anthropocene, goodbye Holocene. Earth's Future 2, 2014EF000268 (2014)

    Article  Google Scholar 

  • Wright, R. A Short History of Progress (House of Anansi Press, 2004)

    Google Scholar 

  • Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Monnin, E, et al. Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112–114 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Veres, D. et al. The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years. Clim. Past 9, 1733–1748 (2013)

    Article  Google Scholar 

  • Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Alexander, L. V, et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 3–28 (Cambridge Univ. Press, 2013)

  • Indermuhle, A. et al. Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398, 121–126 (1999)

    Article  ADS  CAS  Google Scholar 

  • Siegenthaler, U. et al. Supporting evidence from the EPICA Dronning Maud Land ice core for atmospheric CO2 changes during the past millennium. Tellus B 57, 51–57 (2005)

    Article  ADS  Google Scholar 

  • Ahn, J. et al. CO2 diffusion in polar ice: observations from naturally formed CO2 spikes in the Siple Dome (Antarctica) ice core. J. Glaciol. 54, 685–695 (2008)

    Article  ADS  CAS  Google Scholar 

  • Marín-Spiotta, E. & Sharma, S. Carbon storage in successional and plantation forest soils: a tropical analysis. Glob. Ecol. Biogeogr. 22, 105–117 (2013)

    Article  Google Scholar 

  • Bonner, M. T. L., Schmidt, S. & Shoo, L. P. A meta-analytical global comparison of aboveground biomass accumulation between tropical secondary forests and monoculture plantations. For. Ecol. Manage. 291, 73–86 (2013)

    Article  Google Scholar 

  • Pongratz, J., Caldeira, K., Reick, C. H. & Claussen, M. Coupled climate-carbon simulations indicate minor global effects of wars and epidemics on atmospheric CO2 between ad 800 and 1850. Holocene 21, 843–851 (2011)

    Article  ADS  Google Scholar 

  • Orihuela-Belmonte, D. E. et al. Carbon stocks and accumulation rates in tropical secondary forests at the scale of community, landscape and forest type. Agric. Ecosyst. Environ. 171, 72–84 (2013)

    Article  Google Scholar 

  • Francey, R. J. et al. A 1000-year high precision record of δ13C in atmospheric CO2 . Tellus B 51, 170–193 (1999)

    Article  ADS  Google Scholar 

  • Trudinger, C. M., Enting, I. G., Francey, R. J., Etheridge, D. M. & Rayner, P. J. Long-term variability in the global carbon cycle inferred from a high-precision CO2 and δ13C ice-core record. Tellus B 51, 233–248 (1999)

    Article  ADS  Google Scholar 

  • Böhm, F. et al. Evidence for preindustrial variations in the marine surface water carbonate system from coralline sponges. Geochem. Geophys. Geosyst. 3, 1–13 (2002)

    Article  Google Scholar 

  • Trudinger, C. M., Enting, I. G., Rayner, P. J. & Francey, R. J. Kalman filter analysis of ice core data—2. Double deconvolution of CO2 and δ13C measurements. J. Geophys. Res. D 107, D20 (2002)

    Google Scholar