nature.com

Cell signalling and the control of pre-mRNA splicing - Nature Reviews Molecular Cell Biology

  • ️Manley, James L.
  • ️Wed Sep 01 2004
  • Mironov, A. A., Fickett, J. W. & Gelfand, M. S. Frequent alternative splicing of human genes. Genome Res. 9, 1288–1293 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, J. M. et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302, 2141–2144 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Kan, Z., Rouchka, E. C., Gish, W. R. & States, D. J. Gene structure prediction and alternative splicing analysis using genomically aligned ESTs. Genome Res. 11, 889–900 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modrek, B., Resch, A., Grasso, C. & Lee, C. Genome-wide analysis of alternative splicing using human expressed sequence data. Nucleic Acids Res. 29, 2850–2859 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blencowe, B. J. Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends Biochem. Sci. 25, 106–110 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Smith, C. W. & Valcarcel, J. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem. Sci. 25, 381–388 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Grabowski, P. J. & Black, D. L. Alternative RNA splicing in the nervous system. Prog. Neurobiol. 65, 289–308 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Graveley, B. R. Alternative splicing: increasing diversity in the proteomic world. Trends Genet. 17, 100–107 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Maniatis, T. & Tasic, B. Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418, 236–243 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Black, D. L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Manley, J. L. & Tacke, R. SR proteins and splicing control. Genes Dev. 10, 1569–1579 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Graveley, B. R. Sorting out the complexity of SR protein functions. RNA 6, 1197–1211 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, J. Y. & Maniatis, T. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75, 1061–1070 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Kohtz, J. D. et al. Protein–protein interactions and 5′-splice-site recognition in mammalian mRNA precursors. Nature 368, 119–124 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Xiao, S. H. & Manley, J. L. Phosphorylation of the ASF/SF2 RS domain affects both protein–protein and protein–RNA interactions and is necessary for splicing. Genes Dev. 11, 334–344 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Xiao, S. H. & Manley, J. L. Phosphorylation–dephosphorylation differentially affects activities of splicing factor ASF/SF2. EMBO J. 17, 6359–6367 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gui, J. F., Lane, W. S. & Fu, X. D. A serine kinase regulates intracellular localization of splicing factors in the cell cycle. Nature 369, 678–682 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Colwill, K. et al. The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. EMBO J. 15, 265–275 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan, P. I. et al. Alternative splicing of STY, a nuclear dual specificity kinase. J. Biol. Chem. 270, 21524–21531 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Lee, K., Du, C., Horn, M. & Rabinow, L. Activity and autophosphorylation of LAMMER protein kinases. J. Biol. Chem. 271, 27299–27303 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Nayler, O., Stamm, S. & Ullrich, A. Characterization and comparison of four serine- and arginine-rich (SR) protein kinases. Biochem. J. 326, 693–700 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad, J., Colwill, K., Pawson, T. & Manley, J. L. The protein kinase Clk/Sty directly modulates SR protein activity: both hyper- and hypophosphorylation inhibit splicing. Mol. Cell. Biol. 19, 6991–7000 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad, J. & Manley, J. L. Regulation and substrate specificity of the SR protein kinase Clk/Sty. Mol. Cell. Biol. 23, 4139–4149 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko, T. K., Kelly, E. & Pines, J. CrkRS: a novel conserved Cdc2-related protein kinase that colocalises with SC35 speckles. J. Cell Sci. 114, 2591–2603 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Hirose, Y. & Manley, J. L. RNA polymerase II and the integration of nuclear events. Genes Dev. 14, 1415–1429 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Proudfoot, N. J., Furger, A. & Dye, M. J. Integrating mRNA processing with transcription. Cell 108, 501–512 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Dreyfuss, G., Matunis, M. J., Pinol-Roma, S. & Burd, C. G. hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem. 62, 289–321 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Mayeda, A. & Krainer, A. R. Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell 68, 365–375 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Singh, R., Valcarcel, J. & Green, M. R. Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science 268, 1173–1176 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Ruskin, B., Zamore, P. D. & Green, M. R. A factor, U2AF, is required for U2 snRNP binding and splicing complex assembly. Cell 52, 207–219 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Labourier, E. et al. Antagonism between RSF1 and SR proteins for both splice-site recognition in vitro and Drosophila development. Genes Dev. 13, 740–753 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin, C. & Manley, J. L. The SR protein SRp38 represses splicing in M phase cells. Cell 111, 407–417 (2002). Characterizes SRp38 as a general splicing repressor that is activated by dephosphorylation, and shows that the splicing machinery is repressed by SRp38 during M phase of the cell cycle.

    Article  CAS  PubMed  Google Scholar 

  • Kanopka, A., Muhlemann, O. & Akusjarvi, G. Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNA. Nature 381, 535–538 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Valcarcel, J., Singh, R., Zamore, P. D. & Green, M. R. The protein Sex-lethal antagonizes the splicing factor U2AF to regulate alternative splicing of transformer pre-RNA. Nature 362, 171–175 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Amrein, H., Hedley, M. L. & Maniatis, T. The role of specific protein–RNA and protein–protein interactions in positive and negative control of pre-mRNA splicing by Transformer 2. Cell 76, 735–746 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Jensen, K. B. et al. Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron 25, 359–371 (2000). Describes NOVA1 as a brain-specific splicing regulator by showing neuronal splicing defects in Nova1 -null mice.

    Article  CAS  PubMed  Google Scholar 

  • Ponta, H., Sherman, L. & Herrlich, P. A. CD44: from adhesion molecules to signaling regulators. Nature Rev. Mol. Cell Biol. 4, 33–45 (2003).

    Article  CAS  Google Scholar 

  • Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Konig, H., Ponta, H. & Herrlich, P. Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator. EMBO J. 17, 2904–2913 (1998). Provides an initial characterization of CD44 v5 alternative-splicing regulation in response to activated Ras by identifying positively and negatively acting sequences.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weg-Remers, S., Ponta, H., Herrlich, P. & Konig, H. Regulation of alternative pre-mRNA splicing by the ERK MAP-kinase pathway. EMBO J. 20, 4194–4203 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vernet, C. & Artzt, K. STAR, a gene family involved in signal transduction and activation of RNA. Trends Genet. 13, 479–484 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Taylor, S. J. & Shalloway, D. An RNA-binding protein associated with Src through its SH2 and SH3 domains in mitosis. Nature 368, 867–871 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Fumagalli, S., Totty, N. F., Hsuan, J. J. & Courtneidge, S. A. A target for Src in mitosis. Nature 368, 871–874 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Taylor, S. J., Resnick, R. J. & Shalloway, D. SAM68 exerts separable effects on cell cycle progression and apoptosis. BMC Cell Biol. 5, 5 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  • Matter, N., Herrlich, P. & Konig, H. Signal-dependent regulation of splicing via phosphorylation of SAM68. Nature 420, 691–695 (2002). Provides evidence that SAM68 activates CD44 v5 inclusion in response to phosphorylation by ERK.

    Article  CAS  PubMed  Google Scholar 

  • Tacke, R. & Manley, J. L. The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. EMBO J. 14, 3540–3551 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tacke, R. Tohyama, M., Ogawa, S., & Manley, J. L. Human Tra2 proteins are sequence-specific activators of pre-mRNA splicing. Cell 93, 139–148 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Matter, N. et al. Heterogeneous ribonucleoprotein A1 is part of an exon-specific splice-silencing complex controlled by oncogenic signaling pathways. J. Biol. Chem. 275, 35353–35360 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kashima, T. & Manley, J. L. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nature. Genet. 34, 460–463 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Hermiston, M. L., Xu, Z. & Weiss, A. CD45: a critical regulator of signaling thresholds in immune cells. Annu. Rev. Immunol. 21, 107–137 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Lynch, K. W. & Weiss, A. A model system for activation-induced alternative splicing of CD45 pre-mRNA in T cells implicates protein kinase C and Ras. Mol. Cell. Biol. 20, 70–80 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch, K. W. & Weiss, A. A CD45 polymorphism associated with multiple sclerosis disrupts an exonic splicing silencer. J. Biol. Chem. 276, 24341–24347 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Rothrock, C., Cannon, B., Hahm, B. & Lynch. K. W. A conserved signal-responsive sequence mediates activation-induced alternative splicing of CD45. Mol. Cell 12, 1317–1324 (2003). Defines an ESS element as a signal-responsive cis -element that mediates CD45 v5 skipping.

    Article  CAS  PubMed  Google Scholar 

  • Lemaire, R., Winne, A., Sarkissian, M. & Lafyatis, R. SF2 and SRp55 regulation of CD45 exon 4 skipping during T cell activation. Eur. J. Immunol. 29, 823–837 (1999).

    Article  CAS  PubMed  Google Scholar 

  • ten Dam, G. B. et al. Regulation of alternative splicing of CD45 by antagonistic effects of SR protein splicing factors. J. Immunol. 164, 5287–5295 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Wu, J. Y., Tang, H. & Havlioglu, N. Alternative pre-mRNA splicing and regulation of programmed cell death. Prog. Mol. Subcell. Biol. 31, 153–185 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Chalfant, C. E. et al. FAS activation induces dephosphorylation of SR proteins; dependence on the de novo generation of ceramide and activation of protein phasphatase 1. J. Biol. Chem. 276, 44848–44855 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Bose, R. et al. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 82, 405–414 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Utz, P. J., Hottelet, M., van Venrooij, W. J. & Anderson, P. Association of phosphorylated serine/Arg (SR) splicing factors with the U1-small ribonucleoprotein (snRNP) auroantigen complex accompanies apoptotic cell death. J. Exp. Med. 187, 547–560 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalfant, C. E. et al. De novo ceramide regulates the alternative splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma cells. Dependence on protein phosphatase-1. J. Biol. Chem. 277, 12587–12595 (2002). Provides evidence that ceramide regulates alternative splicing of transcripts that encode apoptotic regulators.

    Article  CAS  PubMed  Google Scholar 

  • Massiello, A. et al. Identification of two RNA cis-elements that function to regulate the 5′ splice site selection of Bcl-x pre-mRNA in response to ceramide. J. Biol. Chem. 279, 15799–15804 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Forch, P. et al. The apoptosis-promoting factor TIA1 is a regulator of alternative pre-mRNA splicing. Mol. Cell 6, 1089–1098 (2000). Describes the mechanism by which TIA1 regulates alternative splicing of Fas pre-mRNA.

    Article  CAS  PubMed  Google Scholar 

  • Forch, P., Puig, O., Martinez, C., Seraphin, B. & Valcarcel, J. The splicing regulator TIA1 interacts with U1-C to promote U1 snRNP recruitment to 5′ splice sites. EMBO J. 21, 6882–6892 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian, Q., Streuli, M., Schlossman, S. F. & Anderson, P. A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell 67, 629–639 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Tian, Q., Taupin, J., Elledge, S., Robertson, M. & Anderson, P. Fas-mediated serine/threonine kinase (FAST) phosphorylates TIA1 during Fas-mediated apoptosis. J. Exp. Med. 182, 865–874 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Burns, C. G. et al. Removal of a single α-tubulin gene intron suppresses cell cycle arrest phenotypes of splicing factor mutations in Saccharomyces cerevisiae. Mol. Cell. Biol. 22, 801–815 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez, P. J. & Seraphin, B. Genomic-scale quantitative analysis of yeast pre-mRNA splicing: Implications for splice-site recognition. RNA 5, 1135–1137 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segil, N., Guermah, M., Hoffmann, A., Roeder, R. G. & Heintz. N. Mitotic regulation of TFIID: inhibition of activator-dependent transcription and changes in subcellular localization. Genes Dev. 10, 2389–2400 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Akoulitchev, S. & Reinberg, D. The molecular mechanism of mitotic inhibition of TFIIH is mediated by phosphorylation of CDK7. Genes Dev. 12, 3541–3550 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long, J. J., Leresche, A., Kriwacki, R. W. & Gottesfeld, J. M. Repression of TFIIH transcriptional activity and TFIIH associated cdk7 kinase activity at mitosis. Mol. Cell. Biol. 18, 1467–1476 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Y. X., Hirose, Y., Zhou, X. Z., Lu, K. P. & Manley, J. L. Pin1 modulates the structure and function of human RNA polymerase II. Genes Dev. 17, 2765–2776 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colgan, D. F., Murthy, K. G., Prives, C. & Manley, J. L. Cell-cycle related regulation of poly(A) polymerase by phosphorylation. Nature 384, 282–285 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Pyronnet, S., Dostie, J. & Sonenberg, N. Suppression of cap-dependent translation in mitosis. Genes Dev. 15, 2083–2093 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin, C., Feng, Y. & Manley, J. L. Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock. Nature 427, 553–558 (2004). Provides evidence that SRp38 is responsible for heat-shock-induced splicing repression in vitro and in vivo.

    Article  CAS  PubMed  Google Scholar 

  • Pyronnet, S. & Sonenberg, N. Cell-cycle-dependent translational control. Curr. Opin. Genet. Dev. 11, 13–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Trinkle-Mulcahy, L. et al. Nuclear organization of NIPP1, a regulatory subunit of protein phosphotase 1 that associates with pre-mRNA splicing factors. J. Cell Sci. 112, 157–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Beullens, M. & Bollen, M. The protein phosphatase-1 regulator NIPP1 is also a splicing factor involved in a late step of spliceosome assembly. J. Biol. Chem. 277, 19855–19860 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Boudrez, A. et al. NIPP1-mediated interaction of protein phosphatase-1 with CDC5L, a regulator of pre-mRNA splicing and mitotic entry. J. Biol. Chem. 275, 25411–25417 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Boudrez, A., Beullens, M., Waelkens, E., Stalmans, W. & Bollen, M. Phosphorylation-dependent interaction between the splicing factors SAP155 and NIPP1. J. Biol. Chem. 277, 31834–31841 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Anderson, R. A., Boronenkov, I. V., Doughman, S. D., Kunz, J. & Loijens, J. C. Phosphatidylinositol phosphate kinases, a multifaceted family of signaling enzymes. J. Biol. Chem. 274, 9907–9910 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Toker, A. Phosphoinositides and signal transduction. Cell. Mol. Life Sci. 59, 761–779 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Boronenkov, I. V., Loijens, J. C., Umeda, M. & Anderson, R. A. Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol. Biol. Cell 9, 3547–3560 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborne, S. L., Thomas, C. L., Gschmeissner, S. & Schiavo, G. Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J. Cell Sci. 114, 2501–2511 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Yost, H. J., Petersen, R. B. & Lindquist, S. RNA metabolism: strategies for regulation in the heat shock response. Trends Genet. 6, 223–227 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Gattoni, R. et al. The human hnRNP-M proteins: structure and relation with early heat shock-induced splicing arrest and chromosome mapping. Nucleic Acids Res. 24, 2535–2542 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahe, D. et al. Cloning of human 2H9 heterogeneous nuclear ribonucleoproteins. Relation with splicing and early heat shock-induced splicing arrest. J. Biol. Chem. 272, 1827–1836 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Jenkins, G. M. et al. Acute activation of de novo sphingolipid biosynthesis upon heat shock causes an accumulation of ceramide and subsequent dephosphorylation of SR proteins. J. Biol. Chem. 277, 42572–42578 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Carlsson, A. A paradigm shift in brain research. Science 294, 1021–1024 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Nieoullon, A. Dopamine and the regulation of cognition and attention. Prog. Neurobiol. 67, 53–83 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Berke, J. D., Paletzki, R. F., Aronson, G. J., Hyman, S. E. & Gerfen, C. R. A complex program of striatal gene expression induced by dopaminergic stimulation. J. Neurosci. 18, 5301–5310 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berke, J. D. et al. Dopamine and glutamate induce distinct striatal splice forms of Ania-6, an RNA polymerase II-associated cyclin. Neuron 32, 277–287 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Sgambato, V., Minassian, R., Nairn, A. C. & Hyman, S. E. Regulation of ania-6 splice variants by distinct signaling pathways in striatal neurons. J. Neurochem. 86, 153–164 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Boucher, L., Ouzounis, C. A., Enright, A. J. & Blencowe, B. J. A genome-wide survey of RS domain proteins. RNA 7, 1693–1701 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dickinson, L. A., Edgar, A. J., Ehley, J. & Gottesfeld, J. M. Cyclin L is an RS domain protein involved in pre-mRNA splicing. J. Biol. Chem. 277, 25465–25473 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Hu, D., Mayeda, A., Trembley, J. H., Lahti, J. M. & Kidd, V. J. CDK11 complexes promote pre-mRNA splicing. J. Biol. Chem. 278, 8623–8629 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Trembley, J. H. et al. PITSLRE p110 protein kinases associate with transcription complexes and affect their activity. J. Biol. Chem. 277, 2589–2596 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Lahti, J. M., Xiang, J., Heath, L. S., Campana, D. & Kidd, V. J. PITSLRE protein kinase activity is associated with apoptosis. Mol. Cell. Biol. 15, 1–11 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, D., Gururajan, R. & Kidd, V. J. Phosphorylation of PITSLRE p110 isoforms accompanies their processing by caspases during Fas-mediated cell death. J. Biol. Chem. 273, 16601–16607 (1998).

    Article  CAS  PubMed  Google Scholar 

  • de Graaf, K. et al. Characterization of cyclin L2, a novel cyclin with an arginine/serine-rich (RS) domain: phosphorylation by DYRK1A and colocalization with splicing factors. J. Biol. Chem. 279, 4612–4624 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Yang, L. et al. Cyclin L2, a novel RNA-polymerase II-associated cyclin, is involved in pre-mRNA splicing and induces apoptosis of human hepatocellular carcinoma cells. J. Biol. Chem. 279, 11639–11648 (2004). Shows that cyclin L2 functions in splicing in vitro and that overexpression induces apoptosis.

    Article  CAS  PubMed  Google Scholar 

  • Butler, A., Tsunoda, S., McCobb, D. P., Wei, A. & Salkoff, L. mSlo, a complex mouse gene encoding 'maxi' calcium-activated potassium channels. Science 261, 221–224 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Black, D. L. Splicing in the inner ear: a familiar tune, but what are the instruments? Neuron 20, 165–168 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Xie, J. & McCobb, D. P. Control of alternative splicing of potassium channels by stress hormones. Science 280, 443–446 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Xie, J. & Black, D. L. A CaMK IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels. Nature 410, 936–939 (2001). Describes a sequence element in the STREX exon of the SLO transcript that is required for exon exclusion after depolarization-induced signalling through CaMKIV.

    Article  CAS  PubMed  Google Scholar 

  • Yeakley, J. M. et al. Profiling alternative splicing on fiber-optic arrays. Nature Biotechnol. 20, 353–358 (2002).

    Article  CAS  Google Scholar