Skewes's number - Wikipedia
- ️Invalid Date
From Wikipedia, the free encyclopedia
Unsolved problem in mathematics:
What is the smallest Skewes's number?
In number theory, Skewes's number is the smallest natural number for which the prime-counting function
exceeds the logarithmic integral function
It is named for the South African mathematician Stanley Skewes who first computed an upper bound on its value.
The exact value of Skewes's number is still not known, but it is known that there is a crossing between and
near
It is not known whether this is the smallest crossing.
The name is sometimes also applied to either of the large number bounds which Skewes found.
Although nobody has ever found a value of for which
Skewes's research supervisor J.E. Littlewood had proved in Littlewood (1914) that there is such a number (and so, a first such number); and indeed found that the sign of the difference
changes infinitely many times. Littlewood's proof did not, however, exhibit a concrete such number
, nor did it even give any bounds on the value.
Skewes's task was to make Littlewood's existence proof effective: exhibit some concrete upper bound for the first sign change. According to Georg Kreisel, this was not considered obvious even in principle at the time.[citation needed]
Skewes (1933) proved that, assuming that the Riemann hypothesis is true, there exists a number violating
below
Without assuming the Riemann hypothesis, Skewes (1955) later proved that there exists a value of below
These upper bounds have since been reduced considerably by using large-scale computer calculations of zeros of the Riemann zeta function. The first estimate for the actual value of a crossover point was given by Lehman (1966), who showed that somewhere between and
there are more than
consecutive integers
with
.
Without assuming the Riemann hypothesis, H. J. J. te Riele (1987) proved an upper bound of
. A better estimate was
discovered by Bays & Hudson (2000), who showed there are at least
consecutive integers somewhere near this value where
. Bays and Hudson found a few much smaller values of
where
gets close to
; the possibility that there are crossover points near these values does not seem to have been definitely ruled out yet, though computer calculations suggest they are unlikely to exist. Chao & Plymen (2010) gave a small improvement and correction to the result of Bays and Hudson. Saouter & Demichel (2010) found a smaller interval for a crossing, which was slightly improved by Zegowitz (2010). The same source shows that there exists a number
violating
below
. This can be reduced to
assuming the Riemann hypothesis. Stoll & Demichel (2011) gave
.
Year | near x | # of complex zeros used |
by |
---|---|---|---|
2000 | 1.39822×10316 | 106 | Bays and Hudson |
2010 | 1.39801×10316 | 107 | Chao and Plymen |
2010 | 1.397166×10316 | 2.2×107 | Saouter and Demichel |
2011 | 1.397162×10316 | 2.0×1011 | Stoll and Demichel |
Rigorously, Rosser & Schoenfeld (1962) proved that there are no crossover points below , improved by Brent (1975) to
, by Kotnik (2008) to
, by Platt & Trudgian (2014) to
, and by Büthe (2015) to
.
There is no explicit value known for certain to have the property
though computer calculations suggest some explicit numbers that are quite likely to satisfy this.
Even though the natural density of the positive integers for which does not exist, Wintner (1941) showed that the logarithmic density of these positive integers does exist and is positive. Rubinstein & Sarnak (1994) showed that this proportion is about 2.6×10−7, which is surprisingly large given how far one has to go to find the first example.
Riemann gave an explicit formula for , whose leading terms are (ignoring some subtle convergence questions)
where the sum is over all in the set of non-trivial zeros of the Riemann zeta function.
The largest error term in the approximation (if the Riemann hypothesis is true) is negative
, showing that
is usually larger than
. The other terms above are somewhat smaller, and moreover tend to have different, seemingly random complex arguments, so mostly cancel out. Occasionally however, several of the larger ones might happen to have roughly the same complex argument, in which case they will reinforce each other instead of cancelling and will overwhelm the term
.
The reason why the Skewes number is so large is that these smaller terms are quite a lot smaller than the leading error term, mainly because the first complex zero of the zeta function has quite a large imaginary part, so a large number (several hundred) of them need to have roughly the same argument in order to overwhelm the dominant term. The chance of random complex numbers having roughly the same argument is about 1 in
.
This explains why
is sometimes larger than
and also why it is rare for this to happen.
It also shows why finding places where this happens depends on large scale calculations of millions of high precision zeros of the Riemann zeta function.
The argument above is not a proof, as it assumes the zeros of the Riemann zeta function are random, which is not true. Roughly speaking, Littlewood's proof consists of Dirichlet's approximation theorem to show that sometimes many terms have about the same argument.
In the event that the Riemann hypothesis is false, the argument is much simpler, essentially because the terms for zeros violating the Riemann hypothesis (with real part greater than 1/2) are eventually larger than
.
The reason for the term is that, roughly speaking,
actually counts powers of primes, rather than the primes themselves, with
weighted by
. The term
is roughly analogous to a second-order correction accounting for squares of primes.
Equivalent for prime k-tuples
[edit]
An equivalent definition of Skewes's number exists for prime k-tuples (Tóth (2019)). Let denote a prime (k + 1)-tuple,
the number of primes
below
such that
are all prime, let
and let
denote its Hardy–Littlewood constant (see First Hardy–Littlewood conjecture). Then the first prime
that violates the Hardy–Littlewood inequality for the (k + 1)-tuple
, i.e., the first prime
such that
(if such a prime exists) is the Skewes number for
The table below shows the currently known Skewes numbers for prime k-tuples:
Prime k-tuple | Skewes number | Found by |
---|---|---|
(p, p + 2) | 1369391 | Wolf (2011) |
(p, p + 4) | 5206837 | Tóth (2019) |
(p, p + 2, p + 6) | 87613571 | Tóth (2019) |
(p, p + 4, p + 6) | 337867 | Tóth (2019) |
(p, p + 2, p + 6, p + 8) | 1172531 | Tóth (2019) |
(p, p + 4, p +6 , p + 10) | 827929093 | Tóth (2019) |
(p, p + 2, p + 6, p + 8, p + 12) | 21432401 | Tóth (2019) |
(p, p +4 , p +6 , p + 10, p + 12) | 216646267 | Tóth (2019) |
(p, p + 4, p + 6, p + 10, p + 12, p + 16) | 251331775687 | Tóth (2019) |
(p, p+2, p+6, p+8, p+12, p+18, p+20) | 7572964186421 | Pfoertner (2020) |
(p, p+2, p+8, p+12, p+14, p+18, p+20) | 214159878489239 | Pfoertner (2020) |
(p, p+2, p+6, p+8, p+12, p+18, p+20, p+26) | 1203255673037261 | Pfoertner / Luhn (2021) |
(p, p+2, p+6, p+12, p+14, p+20, p+24, p+26) | 523250002674163757 | Luhn / Pfoertner (2021) |
(p, p+6, p+8, p+14, p+18, p+20, p+24, p+26) | 750247439134737983 | Pfoertner / Luhn (2021) |
The Skewes number (if it exists) for sexy primes is still unknown.
It is also unknown whether all admissible k-tuples have a corresponding Skewes number.
- Bays, C.; Hudson, R. H. (2000), "A new bound for the smallest
with
" (PDF), Mathematics of Computation, 69 (231): 1285–1296, doi:10.1090/S0025-5718-99-01104-7, MR 1752093, Zbl 1042.11001
- Brent, R. P. (1975), "Irregularities in the distribution of primes and twin primes", Mathematics of Computation, 29 (129): 43–56, doi:10.2307/2005460, JSTOR 2005460, MR 0369287, Zbl 0295.10002
- Büthe, Jan (2015), An analytic method for bounding
, arXiv:1511.02032, Bibcode:2015arXiv151102032B
- Chao, Kuok Fai; Plymen, Roger (2010), "A new bound for the smallest
with
", International Journal of Number Theory, 6 (3): 681–690, arXiv:math/0509312, doi:10.1142/S1793042110003125, MR 2652902, Zbl 1215.11084
- Kotnik, T. (2008), "The prime-counting function and its analytic approximations", Advances in Computational Mathematics, 29 (1): 55–70, doi:10.1007/s10444-007-9039-2, MR 2420864, S2CID 18991347, Zbl 1149.11004
- Lehman, R. Sherman (1966), "On the difference
", Acta Arithmetica, 11: 397–410, doi:10.4064/aa-11-4-397-410, MR 0202686, Zbl 0151.04101
- Littlewood, J. E. (1914), "Sur la distribution des nombres premiers", Comptes Rendus, 158: 1869–1872, JFM 45.0305.01
- Platt, D. J.; Trudgian, T. S. (2014), On the first sign change of
, arXiv:1407.1914, Bibcode:2014arXiv1407.1914P
- te Riele, H. J. J. (1987), "On the sign of the difference
", Mathematics of Computation, 48 (177): 323–328, doi:10.1090/s0025-5718-1987-0866118-6, JSTOR 2007893, MR 0866118
- Rosser, J. B.; Schoenfeld, L. (1962), "Approximate formulas for some functions of prime numbers", Illinois Journal of Mathematics, 6: 64–94, doi:10.1215/ijm/1255631807, MR 0137689
- Saouter, Yannick; Demichel, Patrick (2010), "A sharp region where
is positive", Mathematics of Computation, 79 (272): 2395–2405, doi:10.1090/S0025-5718-10-02351-3, MR 2684372
- Rubinstein, M.; Sarnak, P. (1994), "Chebyshev's bias", Experimental Mathematics, 3 (3): 173–197, doi:10.1080/10586458.1994.10504289, MR 1329368
- Skewes, S. (1933), "On the difference
", Journal of the London Mathematical Society, 8: 277–283, doi:10.1112/jlms/s1-8.4.277, JFM 59.0370.02, Zbl 0007.34003
- Skewes, S. (1955), "On the difference
(II)", Proceedings of the London Mathematical Society, 5: 48–70, doi:10.1112/plms/s3-5.1.48, MR 0067145
- Stoll, Douglas; Demichel, Patrick (2011), "The impact of
complex zeros on
for
", Mathematics of Computation, 80 (276): 2381–2394, doi:10.1090/S0025-5718-2011-02477-4, MR 2813366
- Tóth, László (2019), "On The Asymptotic Density Of Prime k-tuples and a Conjecture of Hardy and Littlewood" (PDF), Computational Methods in Science and Technology, 25 (3), doi:10.12921/cmst.2019.0000033, S2CID 203836016.
- Wintner, A. (1941), "On the distribution function of the remainder term of the prime number theorem", American Journal of Mathematics, 63 (2): 233–248, doi:10.2307/2371519, JSTOR 2371519, MR 0004255
- Wolf, Marek (2011), "The Skewes number for twin primes: counting sign changes of π2(x) − C2Li2(x)" (PDF), Computational Methods in Science and Technology, 17: 87–92, doi:10.12921/cmst.2011.17.01.87-92, S2CID 59578795.
- Zegowitz, Stefanie (2010), On the positive region of
(masters), Master's thesis, Manchester Institute for Mathematical Sciences, School of Mathematics, University of Manchester
- Demichels, Patrick. "The prime counting function and related subjects" (PDF). Demichel. Archived from the original (PDF) on Sep 8, 2006. Retrieved 2009-09-29.
- Asimov, I. (1976). "Skewered!". Of Matters Great and Small. New York: Ace Books. ISBN 978-0441610723.