Función biyectiva - Wikipedia, la enciclopedia libre
De Wikipedia, la enciclopedia libre
![](https://upload.wikimedia.org/wikipedia/commons/thumb/a/a5/Bijection.svg/200px-Bijection.svg.png)
En matemáticas, una función es biyectiva si es al mismo tiempo inyectiva y sobreyectiva; es decir, si todos los elementos del conjunto de salida tienen una imagen distinta en el conjunto de llegada, y a cada elemento del conjunto de llegada le corresponde un elemento del conjunto de salida.
Formalmente, dada una función :
La función es biyectiva si se cumple la siguiente condición:
Es decir, para todo de
se cumple que existe un único
de
, tal que la función evaluada en
es igual a
.
Dados dos conjuntos finitos e
, entonces existirá una biyección entre ambos si y solo si
e
tienen el mismo número de elementos.
Si es una función real biyectiva, entonces su función inversa
existe y también es biyectiva.
La función:
con
y
es biyectiva.
Luego, su inversa:
también lo es.
El siguiente diagrama de grafos bipartitos se puede ver que la función es biyectiva si es inyectiva y sobreyectiva:
Asientos y alumnos en una sala de clase
En una clase hay un determinado número de asientos. Un grupo de estudiantes ingresa a la clase y el profesor les pide a todos que se sienten. Después de hacer una rápida observación de la sala de clase, el profesor declara con seguridad que hay una biyectividad entre el grupo de estudiantes y la cantidad de asientos, donde cada estudiante está emparejado con el asiento que le corresponde. Lo que el profesor tuvo que observar para poder hacer esta declaración es:
- Todos los estudiantes estaban sentados (nadie estaba de pie),
- Ningún estudiante estaba sentado en más de un asiento,
- Cada asiento estaba ocupado (no había asientos vacíos)
- Ningún asiento estaba ocupado por más de un estudiante.
El profesor, gracias a esa observación, pudo concluir que había igual cantidad de asientos como de estudiantes, sin tener que contar la cantidad de asientos.
Cardinalidad y biyectividad
[editar]
Dados dos conjuntos y
, entre los cuales existe una función biyectiva
tienen cardinales que cumplen
Se define un homeomorfismo (no confundir con homomorfismo ) como una aplicación entre dos espacios topológicos verificando ser una transformación biyectiva y bicontinua.[1]
- ↑ Ayala y otros. "Elementos de topología general". ISBN 84-7829-006-0