Homomorfismo de grupos - Wikipedia, la enciclopedia libre
De Wikipedia, la enciclopedia libre
![](https://upload.wikimedia.org/wikipedia/commons/thumb/7/7d/Group_homomorphism_ver.2.svg/250px-Group_homomorphism_ver.2.svg.png)
En álgebra, un homomorfismo de grupos es una función entre grupos que preserva la operación binaria.
Dados dos grupos y
la aplicación
es un homomorfismo de grupos si se verifica que para todos los pares de elementos
donde la operación en el lado izquierdo de la ecuación () es la ley de composición interna en
, y la operación del lado derecho de la ecuación (
) es la ley de composición interna en
.[1]
Si la aplicación es biyectiva entonces es un isomorfismo de grupos, lo que significa que ambos grupos tienen la misma estructura algebraica (son isomorfos), y sólo se diferencian por los símbolos utilizados para denotar los elementos y la operación.
Dados dos grupos y
, en el que cada grupo está compuesto por un conjunto de elementos y una ley de composición interna entre ellos (no necesariamente la misma), es posible definir una función que asigne a cada elemento g de
un elemento h de
:
Dicha función es un homomorfismo de grupos si se verifica que para todos los pares de elementos
donde la operación en el lado izquierdo de la ecuación () es la ley de composición interna en
, y la operación del lado derecho de la ecuación (
) es la ley de composición interna en
.[1]
El conjunto de todos los elementos de que son la imagen de algún elemento de
se llama la imagen de la aplicación, y se denota
o
.[2] Formalmente:
La imagen de es un subgrupo de
.
El conjunto de todos los elementos de cuya imagen es el elemento identidad de
se llama núcleo (kernel) de
:
El núcleo de es un subgrupo normal de G. El núcleo es importante porque no sólo determina qué elementos tienen por imagen la identidad, sino también qué elementos tienen la misma imagen:[3]
- Dado
- ya que
Los conjuntos de todos los elementos que comparten una misma imagen son las clases laterales del núcleo.
La función exponencial es un homomorfismo de grupos entre los números reales bajo la adición y el grupo multiplicativo de los reales no nulos (excluido el 0):
dado que
La imagen de la función exponencial es el subgrupo de los números reales positivos, y el núcleo es solo el elemento identidad (el 0), ya que la aplicación es inyectiva.
La función determinante, definida sobre el grupo multiplicativo de matrices invertibles (grupo general lineal) en los números reales no nulos, es un homomorfismo de grupos:
dado que .
Tipos de homomorfismos
[editar]
- un monomorfismo de grupos es un homomorfismo de grupos inyectivo, aquel en el que no hay dos elementos de
con la misma imagen:
- El núcleo de un monomorfismo sólo contiene al elemento identidad, y a la inversa, cuando el núcleo sólo contiene al elemento identidad entonces la función es un monomorfismo.
- un isomorfismo de grupos es un homomorfismo de grupos que es simultáneamente inyectivo y sobreyectivo, o lo que es lo mismo, biyectivo. cuando esto ocurre, ambos grupos tienen la misma estructura algebraica (son isomorfos), y sólo se diferencian por los símbolos utilizados para denotar al conjunto, los elementos y la operación.
- un endomorfismo es un homomorfismo de un grupo en sí mismo:
.
Dado un homomorfismo de grupos , se verifican las siguientes propiedades:
Demostración |
Por ser Por ser Multiplicando por Simplificando: |
Demostración |
Por el resultado anterior |
- La imagen de un inverso es el inverso de la imagen:
.
Demostración |
Aplicando las propiedades obtenidas hasta ahora: y dado que los elemento inversos son únicos: |
Demostración |
Para demostrar que pero dado que |
Teoremas fundamental y de isomorfía
[editar]
![](https://upload.wikimedia.org/wikipedia/commons/thumb/3/30/Teorema_fundamental_de_homomorfismos_diagrama_conmutativo.svg/220px-Teorema_fundamental_de_homomorfismos_diagrama_conmutativo.svg.png)
Teoremas de isomorfismo
[editar]
- El primera teorema es un caso particular del teorema fundamental:
- Segundo teorema:
- Tercer teorema:
- ↑ a b (Judson, 2012, p. 169)
- ↑ (Artin, 2011, p. 48)
- ↑ (Artin, 2011, p. 49)
- ↑ Judson, 2012, p. 170.
- ↑ «Fundamental homomorphism theorem». planetmath.org. Consultado el 1 de septiembre de 2013.
- Judson, Thomas W. (2012). Abstract Algebra. Theory and Applications (pdf). disponible online bajo licencia GFDL.
- Artin, Michael (2011). Algebra (2ª edición). Pearson Education. ISBN 978-0132413770.