it.wikipedia.org

Gruppo generale lineare - Wikipedia

Da Wikipedia, l'enciclopedia libera.

(Reindirizzamento da Gruppo lineare)

In matematica, e più precisamente in algebra lineare, il gruppo lineare generale è il gruppo di tutte le matrici invertibili n × n a valori in un campo K, dove n è un numero intero positivo. Il gruppo lineare generale viene indicato con GL(n, K) oppure con GLn(K), e si dice anche gruppo di matrici.

Il gruppo lineare speciale è il sottogruppo delle matrici aventi determinante uguale a +1. Il gruppo lineare speciale viene indicato con SL(n, K) oppure con SLn(K).

L'insieme GL(n, K) forma un gruppo con l'operazione di moltiplicazione fra matrici. Questo è anche l'insieme di tutte le matrici aventi determinante diverso da zero. Per il teorema di Binet, la funzione

{\displaystyle \mathrm {GL} (n,K)\to K^{*};\qquad A\mapsto \det(A)}

che associa ad una matrice A in GL(n, K) il suo determinante, è un omomorfismo da GL(n, K) in K*, cioè K meno lo zero (che forma un gruppo con l'operazione prodotto).

Il sottogruppo normale SL(n,K) è il nucleo di questo omomorfismo. In altre parole, è il sottogruppo delle matrici con determinante +1.

Il gruppo generale lineare GL(V) di uno spazio vettoriale V sul campo K è definito come il gruppo di tutti gli automorfismi dello spazio, cioè delle trasformazioni lineari invertibili di V in sé. Se lo spazio ha dimensione n finita, allora GL(V) è isomorfo a GL(n,K). L'isomorfismo non è canonico, perché dipende dalla scelta della base di V: se rappresentiamo l'automorfismo T come

{\displaystyle Te_{k}=\sum _{j=1}^{n}a_{jk}e_{j}\quad \forall k=1,...,n}

dove {\displaystyle (e_{1},\ldots ,e_{n})} è una data base, allora la matrice corrispondente a T è proprio la matrice con entrate {\displaystyle (a_{jk})_{jk}}, cioè la sua matrice associata.

Il gruppo GL(n, R) è anche una varietà differenziabile, e assieme alla struttura di gruppo forma un gruppo di Lie. Non è compattoconnesso, perché il determinante è una funzione continua e suriettiva a valori in R meno lo zero, che non è compatto né connesso. Esso ha due componenti connesse, una delle quali contiene SL(n, R).

È però omotopicamente equivalente al gruppo ortogonale O(n), che è un gruppo di Lie compatto.

Il sottogruppo SL(n, R) è connesso ma non compatto, ma è omotopicamente equivalente al gruppo ortogonale speciale SO(n), che è un gruppo di Lie connesso e compatto.

Se K è un campo finito con q elementi, a volte si scrive GL(n,q) invece di GL(n,K) (e analogamente SL(n,q) invece di SL(n,K)). Quando q=p è un numero primo, GL(n,p) è il gruppo degli automorfismi esterni del gruppo {\displaystyle \left(\mathbb {Z} /p\mathbb {Z} \right)^{n}} e poiché {\displaystyle \left(\mathbb {Z} /p\mathbb {Z} \right)^{n}} è un gruppo abeliano e quindi ha gruppo degli automorfismi interni banale, GL(n,p) è anche il gruppo degli automorfismi.

L'ordine di GL(n, q), che in questo caso è un gruppo finito, è

{\displaystyle \prod _{k=0}^{n-1}(q^{n}-q^{k})=(q^{n}-1)(q^{n}-q)(q^{n}-q^{2})\dots (q^{n}-q^{n-1}).}

Questo si può calcolare contando le possibili colonne della matrice: la prima colonna può essere un qualunque vettore non nullo, la seconda può essere un qualunque vettore linearmente indipendente dalla prima colonna e, in generale, la k-esima colonna può essere un qualunque vettore linearmente indipendente dalle prime k -1 colonne.

L'ordine di SL(n, q), che in questo caso è un gruppo finito, è

{\displaystyle {\frac {(q^{n}-1)(q^{n}-q)(q^{n}-q^{2})\dots (q^{n}-q^{n-1})}{q-1}}=(1+q+\dots +q^{n-1})(q^{n}-q)(q^{n}-q^{2})\dots (q^{n}-q^{n-1}),}

dove l'uguaglianza vale per la somma della serie geometrica troncata a n-1. Il calcolo del dell'ordine segue dal fatto che SL(n, q) è il nucleo dell'omomorfismo suriettivo

{\displaystyle \mathrm {GL} (n,K)\to K^{*};\qquad A\mapsto \det(A)}

dove il codominio ha ordine q-1.

Per esempio GL(3,2) ha ordine (8 − 1)(8 − 2)(8 − 4) = 168 ed è il gruppo degli automorfismi del piano di Fano e del gruppo {\displaystyle \left(\mathbb {Z} /2\mathbb {Z} \right)^{3}}

Inoltre SL(3,2) ha ordine (1+2+4)(8-2)(8-4) = 168 e infatti GL(3,2) è isomorfo a SL(3,2).

In generale se q=2 si ha sempre che GL(n,2) è isomorfo a SL(n,2).

Se n=2 le precedenti formule si riducono a

{\displaystyle (q^{2}-1)(q^{2}-q)=(q-1)^{2}q(q+1)}

per GL(2,q) e a

{\displaystyle (1+q)(q^{2}-q)=(q-1)q(q+1)}

per SL(2,q).

Il gruppo lineare generale su un campo primo GL(ν,p), fu costruito e il suo ordine fu calcolato da Évariste Galois nel 1832, nel secondo (dei tre) manoscritti allegati alla sua ultima lettera (a Chevalier). Il suo uso era legato allo studio del gruppo di Galois dell'equazione generale di ordine pν.[1]

Il gruppo lineare generale può anche essere definito su un anello commutativo unitario {\displaystyle A.} L'insieme GL(n, A) forma un gruppo con l'operazione di moltiplicazione fra matrici. Questo è anche l'insieme di tutte le matrici aventi determinante invertibile in {\displaystyle A.} Per il teorema di Binet (che vale in ogni anello commutativo), la funzione

{\displaystyle \mathrm {GL} (n,A)\to A^{*};\qquad M\mapsto \det(M),}

che associa a una matrice M in GL(n, A) il suo determinante, è un omomorfismo da GL(n, A) in A*, cioè l'insieme delle unità di {\displaystyle A} (che forma un gruppo con l'operazione prodotto).

Il sottogruppo normale SL(n,A) è il nucleo di questo omomorfismo. In altre parole, è il sottogruppo delle matrici con determinante 1.

Sia {\displaystyle m\geq 2} un intero con fattorizzazione unica in primi: {\displaystyle m=\prod _{i=1}^{k}p_{i}^{r_{i}}}. Il gruppo lineare generale con elementi nell'anello {\displaystyle \mathbb {Z} /m\mathbb {Z} } ha cardinalità

{\displaystyle \#\mathrm {GL} (n,\mathbb {Z} /m\mathbb {Z} )=\prod _{i=1}^{k}p_{i}^{n^{2}(r_{i}-1)}\prod _{s=0}^{n-1}\left(p_{i}^{n}-p_{i}^{s}\right),}

che si ottiene usando il teorema cinese del resto per separare i primi e poi considerando gli elementi di {\displaystyle \mathrm {GL} (n,\mathbb {Z} /p_{i}\mathbb {Z} ),} per ogni {\displaystyle p_{i},} e sollevandoli a {\displaystyle \mathrm {GL} (n,\mathbb {Z} /p_{i}^{r_{i}}\mathbb {Z} )} in tutti i modi possibili.

  1. ^ Évariste Galois, Lettre de Galois à M. Auguste Chevalier, in Journal de Mathématiques Pures et Appliquées, XI, 1846, pp. 408–415. URL consultato il 4 febbraio 2009.

V · D · M

Algebra
NumeriNaturali · Interi · Razionali · Irrazionali · Algebrici · Trascendenti · Reali · Complessi · Numero ipercomplesso · Numero p-adico · Duali · Complessi iperbolici
Principi fondamentaliPrincipio d'induzione · Principio del buon ordinamento · Relazione di equivalenza · Relazione d'ordine · Associatività della potenza
Algebra elementareEquazione · Disequazione · Polinomio · Triangolo di Tartaglia · Teorema binomiale · Teorema del resto · Lemma di Gauss · Teorema delle radici razionali · Regola di Ruffini · Criterio di Eisenstein · Criterio di Cartesio · Disequazione con il valore assoluto · Segno · Metodo di Gauss-Seidel · Polinomio simmetrico · Funzione simmetrica
Elementi di Calcolo combinatorioFattoriale · Permutazione · Disposizione · Combinazione · Dismutazione · Principio di inclusione-esclusione
Concetti fondamentali di Teoria dei numeri
PrimiNumero primo · Teorema dell'infinità dei numeri primi · Crivello di Eratostene · Crivello di Atkin · Test di primalità · Teorema fondamentale dell'aritmetica
DivisoriInteri coprimi · Identità di Bézout · MCD · mcm · Algoritmo di Euclide · Algoritmo esteso di Euclide · Criteri di divisibilità · Divisore
Aritmetica modulareTeorema cinese del resto · Piccolo teorema di Fermat · Teorema di Eulero · Funzione φ di Eulero · Teorema di Wilson · Reciprocità quadratica
Teoria dei gruppi
GruppiGruppo (finito · ciclico · abeliano) · Gruppo primario · Gruppo quoziente · Gruppo nilpotente · Gruppo risolubile · Gruppo simmetrico · Gruppo diedrale · Gruppo semplice · Gruppo sporadico · Gruppo mostro · Gruppo di Klein · Gruppo dei quaternioni · Gruppo generale lineare · Gruppo ortogonale · Gruppo unitario · Gruppo unitario speciale · Gruppo residualmente finito · Gruppo spaziale · Gruppo profinito · Out(Fn) · Parola · Prodotto diretto · Prodotto semidiretto · Prodotto intrecciato
TeoremiAlternativa di Tits · Teorema di isomorfismo · Teorema di Lagrange · Teorema di Cauchy · Teoremi di Sylow · Teorema di Cayley · Teorema di struttura dei gruppi abeliani finiti · Lemma della farfalla · Lemma del ping-pong · Classificazione dei gruppi semplici finiti
SottoinsiemiSottogruppo · Sottogruppo normale · Sottogruppo caratteristico · Sottogruppo di Frattini · Sottogruppo di torsione · Classe laterale · Classe di coniugio · Serie di composizione
Omomorfismo · Isomorfismo · Automorfismo interno · Automorfismo esterno · Permutazione · Presentazione di un gruppo · Azione di gruppo
Teoria degli anelliAnello (artiniano · noetheriano · locale) · Caratteristica · Ideale (primo · massimale) · Dominio (a fattorizzazione unica · a ideali principali · euclideo) · Matrice · Anello semplice · Anello degli endomorfismi · Teorema di Artin-Wedderburn · Modulo · Dominio di Dedekind · Estensione di anelli · Teorema della base di Hilbert · Anello di Gorenstein · Base di Gröbner · Prodotto tensoriale · Primo associato
Teoria dei campi
Campo · Polinomio irriducibile · Polinomio ciclotomico · Teorema fondamentale dell'algebra · Campo finito · Automorfismo · Endomorfismo di Frobenius
EstensioniCampo di spezzamento · Estensione di campi · Estensione algebrica · Estensione separabile · Chiusura algebrica · Campo di numeri · Estensione normale · Estensione di Galois · Estensione abeliana · Estensione ciclotomica · Teoria di Kummer
Teoria di GaloisGruppo di Galois · Teoria di Galois · Teorema fondamentale della teoria di Galois · Teorema di Abel-Ruffini · Costruzioni con riga e compasso
Altre strutture algebricheMagma · Semigruppo · Corpo · Spazio vettoriale · Algebra su campo · Algebra di Lie · Algebra differenziale · Algebra di Clifford · Gruppo topologico · Gruppo ordinato · Quasi-anello · Algebra di Boole
argomentiTeoria delle categorie · Algebra lineare · Algebra commutativa · Algebra omologica · Algebra astratta · Algebra computazionale · Algebra differenziale · Algebra universale