it.wikipedia.org

Spazio semplicemente connesso - Wikipedia

Da Wikipedia, l'enciclopedia libera.

(Reindirizzamento da Semplicemente connessa)

Una possibile deformazione di una curva attorno alla sfera 2-dimensionale in un punto.

In topologia, uno spazio topologico è semplicemente connesso se è connesso per archi e il suo gruppo fondamentale è il gruppo banale, ovvero se ogni curva chiusa può essere deformata fino a ridursi a un singolo punto. Più intuitivamente, uno spazio topologico è semplicemente connesso se è "fatto di un pezzo solo" e "non ha buchi".

Esempi di spazi semplicemente connessi sono la palla (con o senza la parte interna) e la sfera, mentre la circonferenza e il toro non sono semplicemente connessi.

Sia {\displaystyle X} uno spazio topologico connesso per archi. Sia {\displaystyle p} un punto di {\displaystyle X}. Un arco (o laccio) centrato in {\displaystyle p} è una funzione continua {\displaystyle f:[0,1]\rightarrow } {\displaystyle X} tale che {\displaystyle f(0)=f(1)=p}. Il laccio è contraibile se esiste una omotopia che lo trasforma nel laccio costante {\displaystyle g(t)=p} {\displaystyle \forall t}. In altre parole è contraibile se può essere "contratto" con continuità fino a diventare arbitrariamente piccolo.

Lo spazio topologico {\displaystyle X} è semplicemente connesso se ogni laccio centrato in {\displaystyle p} è contraibile. Questa definizione non dipende dal punto scelto {\displaystyle p}. Esistono le seguenti definizioni alternative:

Questo insieme non è semplicemente connesso, perché ha tre buchi. Questo criterio non vale per spazi di dimensione superiore: ad esempio, una corona sferica ha un buco, ma è semplicemente connessa.
  • Una superficie è semplicemente connessa se ha genere zero, in altre parole se non ha "manici". In particolare l'unica superficie compatta e semplicemente connessa è la sfera.
  • L'asserzione analoga in dimensione 3 (l'unica varietà differenziabile di dimensione 3 compatta e semplicemente connessa è la sfera) è nota, per ragioni storiche, come congettura di Poincaré; è stata dimostrata nel 2003 dal matematico russo Grigori Perelman.
  • Uno spazio topologico X che non sia semplicemente connesso, se è sufficientemente regolare ha un rivestimento universale: questo è un altro spazio topologico semplicemente connesso che lo riveste e che eredita molte delle proprietà di X. (Vedi anche il paragrafo successivo.)
  • Un grafo semplicemente connesso è un albero.
  • Su un aperto semplicemente connesso di Rn ogni forma chiusa è esatta, ed ogni campo vettoriale irrotazionale ha un potenziale.
  • Per il teorema della mappa di Riemann, ogni aperto semplicemente connesso del piano (diverso dal piano stesso) è omeomorfo al disco aperto tramite una mappa olomorfa; poiché il disco aperto è omeomorfo al piano, questo implica che ogni aperto semplicemente connesso del piano è omeomorfo al piano stesso.
Spazio non semilocalmente semplicemente connesso

Molti spazi possiedono versioni "locali" della proprietà di semplice connessione; è spesso utile specificare tale proprietà per escludere casi eccessivamente anomali dallo studio degli spazi non semplicemente connessi.

Uno spazio topologico X si dice semilocalmente semplicemente connesso se ogni suo punto x appartiene a un intorno Ux tale che ogni cammino chiuso in Ux sia omotopo a un cammino costante in X. Si dice invece localmente semplicemente connesso se ogni suo punto possiede una base di intorni semplicemente connessi.

La differenza tra le due definizioni è che nel primo caso si chiede che il cammino chiuso si possa contrarre a un punto qualunque dello spazio, quindi anche uscendo dall'intorno Ux, mentre nel secondo si chiede che il punto a cui il cammino può essere contratto appartenga allo stesso intorno. La seconda definizione è quindi più forte della prima, nel senso che ogni spazio localmente semplicemente connesso è anche semilocalmente semplicemente connesso, ed esistono spazi che possiedono solo la prima proprietà. Uno spazio semplicemente connesso è semilocalmente semplicemente connesso, ma non necessariamente localmente semplicemente connesso.

Queste proprietà sono soddisfatte dalla maggior parte degli spazi topologici comunemente studiati: la circonferenza, il toro, il nastro di Möbius e la bottiglia di Klein sono esempi di spazi localmente semplicemente connessi (come tutte le varietà topologiche), ma non semplicemente connessi. Per avere un esempio di uno spazio topologico che non sia localmente semplicemente connesso si consideri la seguente costruzione: sia

{\displaystyle C(r):={\big \{}(x,y)\in \mathbb {R} ^{2}|x^{2}+y^{2}=2ry{\big \}}}

la circonferenza di raggio r passante per l'origine del piano cartesiano e di centro {\displaystyle (0,r)}; l'insieme

{\displaystyle \bigcup _{n}C\left({\frac {1}{n}}\right)}

è l'unione di infinite circonferenze tangenti l'un l'altra. Ha una struttura di spazio topologico con la topologia indotta da {\displaystyle \mathbb {R} ^{2}}, ma non è localmente semplicemente connesso: infatti, un intorno arbitrariamente piccolo dell'origine contiene infinite circonferenze, ciascuna delle quali rappresenta un cammino chiuso non contraibile. Il cono su questo spazio è un esempio di spazio semilocalmente semplicemente connesso (essendo semplicemente connesso) ma non localmente semplicemente connesso, in quanto il punto di intersezione delle circonferenze non possiede una base di intorni semplicemente connessi.

L'importanza degli spazi semilocalmente semplicemente connessi deriva dalla teoria dei rivestimenti: uno spazio topologico connesso per archi e localmente connesso per archi possiede infatti un rivestimento universale se e solo se è semilocalmente semplicemente connesso.

V · D · M

Topologia
Concetti di Topologia generale
Spazio topologico · Base · Prebase · Ricoprimento · Assiomi di chiusura di Kuratowski · Invariante topologico · Relazione di finezza · Partizione dell'unità · Proprietà dell'intersezione finita
SottoinsiemiIntervallo · Aperto · Intorno · Chiuso · Insieme localmente chiuso · Insieme chiuso-aperto · Parte interna · Chiusura · Frontiera · Insieme derivato · Insieme limite · Insieme perfetto · Insieme denso · Insieme mai denso
PuntiPunto isolato · Punto di accumulazione · Punto di aderenza
FunzioniFunzione continua · Omeomorfismo · Funzione aperta · Funzione chiusa · Funzione propria · Contrazione · Retrazione · Germe di funzione · Funzione a supporto compatto
SuccessioniLimite · Limite di una successione · Successione · Rete · Convergenza · Successione di Cauchy
TeoremiTeorema di Weierstrass · Heine-Borel · Tichonov · Lemma del tubo · Urysohn · Tietze · Baire · Brouwer · punto fisso · Teorema di Borsuk · Teorema di Borsuk-Ulam · Teorema della curva di Jordan · Teorema della mappa di Riemann
Applicazioni praticheTopologia dello spazio-tempo · Teoria quantistica dei campi topologica · K-teoria ritorta · Topologia di rete · Controllo della topologia · Topologia molecolare
Toro
Spazi topologici
Topologie classicheTopologia banale · Spazio di Sierpiński · Cofinita · Topologia della semicontinuità inferiore · di Zariski · Euclidea · del limite inferiore o di Sorgenfrey · Discreta · Topologia degli interi equispaziati · Insieme reale esteso · Topologia di ordine · Piano di Moore · Topologia p-adica
Costruzioni topologicheTopologia prodotto · Topologia di sottospazio · Topologia quoziente · Compattificazione (di Alexandrov · di Stone-Čech) · Cono · Bouquet · Rosa · Sospensione
Topologie in Analisi funzionaleSpazio funzionale · Topologia iniziale o debole · Topologia operatoriale · Topologia finale o forte · Topologia di Mackey · Topologia polare · Topologie operatoriali debole e forte
Altri oggetti topologiciSfera · Palla · Toro · Corpo con manici · Bottiglia di Klein · Bottiglia di Klein solida · Anello · Nastro di Möbius · Retta proiettiva · Piano proiettivo · Superficie di Riemann · Nodo · Nodo torico · Link
FrattaliInsieme di Cantor · Spazio di Cantor · Polvere di Cantor · Spugna di Menger · Sfera di Alexander · Curva di Peano · Laghi di Wada
Strutture misteSpazio vettoriale topologico · Gruppo topologico · Gruppo di Lie · Spazio uniforme · Algebra di Borel
Proprietà degli spazi topologici
NumerabilitàAssioma di numerabilità · Spazio primo-numerabile · Spazio separabile · Spazio sequenziale
SeparazioneAssioma di separazione · Spazio T0 · Spazio T1 · Spazio di Hausdorff · Spazio regolare · Spazio di Tichonov · Spazio normale
CompattezzaSpazio compatto · Spazio paracompatto · Spazio localmente compatto · Spazio di Lindelöf · Sottospazio relativamente compatto · Immersione compatta
ConnessioneSpazio connesso · Spazio semplicemente connesso
MetrizzabilitàSpazio metrico · Spazio metrico completo · Spazio metrizzabile · Spazio ultrametrico · Spazio pseudometrico · Spazio polacco · Spazio normato · Spazio totalmente limitato
Altre proprietàSpazio di Baire · Spazio topologico noetheriano · Spazio omogeneo · Orientazione
Topologia differenzialeVarietà (differenziabile · parallelizzabile · 3-varietà · 3-varietà irriducibile) · Atlante · Diffeomorfismo (locale · di Anosov) · Immersione · Curva · Superficie · Campo vettoriale · Fibrato (principale · vettoriale · Varietà fibrata) · Fibrato tangente · Spazio tangente · Fibrazione di Hopf · Varietà con bordo · Teorema dell'intorno tubolare · Somma connessa · Teorema di Kneser-Milnor · Congettura di geometrizzazione di Thurston · Cobordismo · Dimensione topologica · Topologia in dimensione bassa · Chirurgia di Dehn · Trasversalità · Eversione della sfera · Teoria delle foliazioni · Decomposizione JSJ
Topologia algebrica
FondamentiSpazio semplicemente connesso · Gruppo fondamentale
OmotopiaArco · Nerbo · Omotopia · Gruppi di omotopia
Omologia e coomologiaOmologia · Omologia singolare · Omologia ciclica · Algebra omologica · Coomologia di De Rham · Categoria abeliana
SollevamentoSollevamento · Teorema del sollevamento dell'omotopia · Teorema di unicità del sollevamento · Teorema di Van Kampen
Topologia algebrica avanzataGrado topologico · Indice di avvolgimento · Indice di un campo vettoriale · Rivestimento · Numero di Betti · Successione di Mayer-Vietoris · Successione esatta · Successione spettrale · Complesso simpliciale · Complesso di celle · Complesso di catene · Schema simpliciale
SuperficiCaratteristica di Eulero · Formula di Eulero per i poliedri · Genere · Taglio · Superficie incompressibile · Classificazione delle superfici · Mapping class group · Teorema della palla pelosa · Teorema di Poincaré-Hopf · Congettura di Poincaré · Congettura di Hodge
Topologi di rilievoHenri Poincaré · Felix Hausdorff · Georg Cantor · Eduard Čech · John Milnor · Pierre Samuel · Norman Steenrod · René Thom · Samuel Eilenberg · Andrej Nikolaevič Kolmogorov · Stephen Smale · Michael Atiyah · William Thurston · Marston Morse · Luitzen Brouwer