it.wikipedia.org

Superficie - Wikipedia

Da Wikipedia, l'enciclopedia libera.

Alcune superfici
Piano
Piano
Ellissoide
Ellissoide
(Quadrica)
Sella
Sella
(Grafico di una funzione)
Iperboloide
Iperboloide
(Superficie rigata)
Elicoide
Elicoide
(Superficie minima)
Toro
Toro
Nastro di Möbius
Nastro di Möbius
(Superficie non orientabile)
Toro
Superficie di rotazione

In matematica, una superficie è una forma geometrica senza spessore, avente solo due dimensioni. Una superficie può essere piatta (come un piano) o curva (come il bordo di una sfera o di un cilindro). Può essere limitata o illimitata, chiusa o aperta.

Vi sono diverse definizioni matematiche di superficie: queste sono tutte quante racchiuse nella nozione di "superficie astratta" e di varietà differenziabile. Nei casi più comuni il termine è usato per riferirsi a superfici in uno spazio tridimensionale.

Informalmente una superficie è un oggetto geometrico ideale senza spessore, avente due dimensioni. Alcuni oggetti reali si avvicinano a questa nozione astratta: ad esempio una lamina molto sottile.

Formalmente, la definizione di superficie nello spazio richiede delle nozioni matematiche non banali proprie della geometria differenziale

In altre parole, l'insieme {\displaystyle S} è una superficie se è localmente esprimibile come luogo di zeri di una funzione. La condizione che il gradiente sia diverso da zero garantisce, tramite il teorema del Dini, che la superficie sia un oggetto liscio in ogni punto.

La superficie sferica di raggio unitario centrata nell'origine può essere descritta in forma parametrica:
{\displaystyle x=\sin t\cos u,}
{\displaystyle y=\sin t\sin u,}
{\displaystyle z=\cos t.}
oppure in forma implicita come luogo di zeri della funzione:
{\displaystyle F(x,y,z)=x^{2}+y^{2}+z^{2}-1}.

Una superficie può essere costruita in vari modi.

Una superficie può essere costruita come immagine di una funzione differenziabile iniettiva di due variabili reali nello spazio euclideo tridimensionale

{\displaystyle \varphi :A\to \mathbb {R} ^{3}}

dove {\displaystyle A} è un insieme aperto del piano {\displaystyle \mathbb {R} ^{2}}. Per ottenere un oggetto liscio, si richiede che il differenziale {\displaystyle d\varphi _{x}} di {\displaystyle \varphi } sia anch'esso iniettivo in ogni punto {\displaystyle x}: in altre parole {\displaystyle \varphi } deve essere una immersione.

Con questa costruzione le coordinate dei punti della superficie sono espresse agevolmente tramite le equazioni parametriche:

{\displaystyle x=\varphi _{1}(u,v)}
{\displaystyle y=\varphi _{2}(u,v)}
{\displaystyle z=\varphi _{3}(u,v)}

al variare dei due parametri {\displaystyle (u,v)} nell'aperto {\displaystyle A}.

Questa è la definizione generalmente più utile ai fini pratici, in quanto permette in modo agevole il calcolo di aree e di integrali di superficie.

Questa superficie a forma di sella è il grafico della funzione {\displaystyle z=2(x^{2}-y^{2})}.

Una superficie {\displaystyle S} può essere costruita globalmente come luogo di zeri di un'unica funzione differenziabile

{\displaystyle F:\mathbb {R} ^{3}\to \mathbb {R} }

detta equazione cartesiana. Per ottenere un oggetto liscio, il gradiente di {\displaystyle F} deve essere diverso da zero in ogni punto di {\displaystyle S}. Si noti che la definizione generale di superficie richiede l'esistenza di una tale funzione solo localmente.

Questa superficie è il grafico della funzione {\displaystyle z=\cos(x^{2}+y^{2})}.
L'iperboloide mostrato in figura è ottenuto ruotando un'iperbole lungo l'asse verticale.

Il grafico di una funzione {\displaystyle f} differenziabile

{\displaystyle f:A\to \mathbb {R} }

definita su un aperto {\displaystyle A} del piano cartesiano {\displaystyle \mathbb {R} ^{2}} è una superficie.[1] La superficie può essere indicata in forma implicita tramite l'equazione

{\displaystyle z=f(x,y)}

Nel caso in cui il dominio {\displaystyle A} sia tutto il piano {\displaystyle \mathbb {R} ^{2}}, la superficie è quindi il luogo di zeri della funzione implicita globale

{\displaystyle F(x,y,z)=f(x,y)-z.}

La superficie può anche essere descritta in forma parametrica prendendo

{\displaystyle x=u,}
{\displaystyle y=v,}
{\displaystyle z=f(u,v).}

Molte superfici però non sono grafico di funzioni, ad esempio la superficie sferica.

Una superficie di rotazione (o di rivoluzione) è ottenuta ruotando una curva intorno ad un asse. L'asse può essere uno dei tre assi cartesiani oppure una qualsiasi retta.

In un punto della superficie è definito un piano tangente ed un vettore normale a lui perpendicolare.

L'area {\displaystyle A} di una superficie espressa in forma parametrica tramite una funzione {\displaystyle \varphi (u,v)} con dominio {\displaystyle D} è definita tramite gli strumenti del calcolo integrale nel modo seguente:

{\displaystyle A=\iint _{D}\left|{\frac {\partial \varphi }{\partial u}}\times {\frac {\partial \varphi }{\partial v}}\right|\,\mathrm {d} u\,\mathrm {d} v.}

Nella formula sono presenti un integrale multiplo, le derivate parziali della funzione {\displaystyle \varphi } ed il prodotto vettoriale {\displaystyle \times }. In modo analogo è definito l'integrale di una funzione avente la superficie come dominio: questa operazione è chiamata integrale di superficie.

In ogni punto {\displaystyle x} di una superficie è definito un piano tangente. Il piano tangente è descritto con gli strumenti forniti dall'algebra lineare e dal calcolo infinitesimale in più variabili.

Una normale in {\displaystyle x} è un vettore perpendicolare al piano tangente, avente lunghezza unitaria. In ogni punto {\displaystyle x} ha due normali, di verso opposto.

Un iperboloide, un cilindro e una sfera: queste superfici hanno curvatura gaussiana (rispettivamente) negativa, nulla e positiva.

La curvatura è una proprietà fondamentale delle superfici nello spazio. In ogni punto della superficie vi sono due curvature principali e la curvatura gaussiana è definita come il prodotto di queste due quantità.

La curvatura gaussiana può essere positiva, nulla o negativa. In un piano, la curvatura è nulla e vale l'usuale geometria euclidea; su superfici a curvatura positiva o negativa è possibile definire delle geometrie non euclidee, chiamate rispettivamente ellittica e iperbolica. In queste geometrie, le usuali rette euclidee sono sostituite dalle geodetiche, curve sulla superficie che minimizzano (localmente) la distanza fra due punti.

La topologia è una branca della geometria che studia le proprietà degli oggetti geometrici che restano invariate quando viene effettuata una deformazione senza "strappi".

Questa superficie ha genere due. Il genere (o "numero di manici") è una proprietà topologica: resta invariata se la superficie è deformata in modo continuo.

Il genere di una superficie è informalmente il "numero di manici" che questa contiene.

Un nastro di Möbius è una superficie con una faccia sola (non orientabile).

Una superficie è orientabile se ha due facce (un "sopra" e un "sotto"), non orientabile altrimenti. Contrariamente a quanto suggerito dall'intuizione, esistono effettivamente superfici con una faccia sola: il prototipo è il nastro di Möbius.

Una equazione polinomiale nelle tre variabili {\displaystyle x,y,z}, come ad esempio

{\displaystyle 2x^{2}-y^{3}+xz-1=0}

definisce una superficie algebrica. Affinché il luogo di zeri sia effettivamente una superficie liscia, il differenziale dell'equazione deve essere diverso da zero in ogni punto. Generalmente, si parla però comunque di "superficie algebrica" anche quando questa condizione non è soddisfatta: in questo caso si possono presentare punti non lisci detti singolarità.

Se il polinomio è di primo grado, la superficie è un piano. Superfici descrivibili con equazioni di 2º, 3º, 4º, 5º grado sono chiamate quadriche, cubiche, quartiche, quintiche e così via. La sestica mostrata in figura presenta alcune singolarità.

Lo stesso argomento in dettaglio: Quadrica.

Una quadrica è una superficie algebrica di secondo grado. Le quadriche sono classificate con gli strumenti dell'algebra lineare (essenzialmente il teorema spettrale). Le quadriche non degeneri sono divise in cinque tipi:





Iperboloide a una falda


Iperboloide a due falde

Una superficie è rigata se è unione di (infinite) rette.






Una superficie è minima se ha area (localmente) minima fra tutte quelle che hanno un bordo fissato. Matematicamente, questa condizione equivale alla richiesta che la superficie abbia curvatura media ovunque nulla. In natura alcune strutture tendono a sistemarsi in modo da minimizzare l'area e formano quindi delle superfici minime.

Una superficie è chiusa se è limitata e senza confini, come in una sfera. Con il linguaggio rigoroso della topologia, una superficie è chiusa se è compatta.[2]

La bottiglia di Klein è una superficie che non può essere immersa in {\displaystyle \mathbb {R} ^{3}}.

In topologia, una branca importante della geometria, viene studiata una nozione più generale di superficie. La superficie studiata in questo ambito è un oggetto più astratto, che "vive di vita propria", non necessariamente contenuto nello spazio tridimensionale.

Formalmente, una superficie astratta è una varietà topologica di Hausdorff avente dimensione 2. Molte superfici astratte sono rappresentabili nello spazio, ma non tutte: ad esempio la bottiglia di Klein non è visibile dentro allo spazio tridimensionale (può però essere rappresentabile nello spazio euclideo quadridimensionale).

In molti contesti è più utile definire una superficie come varietà differenziabile invece che topologica. La differenza però non è sostanziale.

Altro esempio di superficie astratta (o algebrica) è la Superficie di Veronese, rappresentabile solamente in uno spazio proiettivo ad almeno cinque dimensioni, mentre la Tromba di Torricelli è un'altra superficie paradossale disegnabile in tre dimensioni.

Una superficie immersa è una superficie che può auto-intersecarsi. Più precisamente, è l'immagine di una immersione

{\displaystyle f:S\to \mathbb {R} ^{3}}

di una superficie astratta {\displaystyle S}. Si richiede quindi che {\displaystyle f} abbia ovunque differenziale iniettivo: questa ipotesi garantisce che {\displaystyle f} sia localmente iniettiva, ma non globalmente.

La superficie di Boy è una superficie immersa nello spazio.

Ad esempio, la bottiglia di Klein è generalmente mostrata nello spazio tridimensionale tramite una immersione: la superficie si auto-interseca lungo una circonferenza. Un'altra superficie immersa è la superficie di Boy: in questo caso {\displaystyle S} è un piano proiettivo reale, una superficie non orientabile che, come la bottiglia di Klein, non può essere contenuta nello spazio.

Nell'ambito della geometria complessa, una superficie complessa è una varietà complessa di dimensione 2. Si tratta di un oggetto completamente diverso dalla usuale superficie, poiché ha topologicamente dimensione reale 4.

Infine, a seconda dei contesti, si può indicare col termine superficie strutture con caratteristiche diverse da quelle citate sopra; ad esempio, si può chiamare brevemente superficie un'ipersuperficie in uno spazio euclideo (o in una varietà differenziabile), cioè una varietà di dimensione inferiore a quella dello spazio ambiente (ma non necessariamente 2), talvolta si parla anche di superfici frattali, indicando strutture frattali costruite a partire da una superficie, ma che, in definitiva, non ne conservano alcuna caratteristica specifica.

Le superfici compatte sono classificate in topologia a meno di omeomorfismo da tre parametri: il genere, il numero di componenti di bordo, e l'orientabilità.

In topologia vengono considerate spesso anche le superfici di tipo finito, ottenute a partire dalle superfici compatte rimuovendo un numero finito di punti e creando così delle punture. Una superficie con punture non è mai compatta. Analogamente alle superfici compatte, quelle di tipo finito sono classificate da quattro parametri: il genere, il numero di componenti di bordo, l'orientabilità e il numero di punture.

  1. ^ In questo caso la differenziabilità è sufficiente per ottenere un oggetto liscio.
  2. ^ In alcuni contesti si chiede che la superficie sia "senza bordo": con la definizione data in questa voce, questa ulteriore condizione non è necessaria.

V · D · M

Topologia
Concetti di Topologia generale
Spazio topologico · Base · Prebase · Ricoprimento · Assiomi di chiusura di Kuratowski · Invariante topologico · Relazione di finezza · Partizione dell'unità · Proprietà dell'intersezione finita
SottoinsiemiIntervallo · Aperto · Intorno · Chiuso · Insieme localmente chiuso · Insieme chiuso-aperto · Parte interna · Chiusura · Frontiera · Insieme derivato · Insieme limite · Insieme perfetto · Insieme denso · Insieme mai denso
PuntiPunto isolato · Punto di accumulazione · Punto di aderenza
FunzioniFunzione continua · Omeomorfismo · Funzione aperta · Funzione chiusa · Funzione propria · Contrazione · Retrazione · Germe di funzione · Funzione a supporto compatto
SuccessioniLimite · Limite di una successione · Successione · Rete · Convergenza · Successione di Cauchy
TeoremiTeorema di Weierstrass · Heine-Borel · Tichonov · Lemma del tubo · Urysohn · Tietze · Baire · Brouwer · punto fisso · Teorema di Borsuk · Teorema di Borsuk-Ulam · Teorema della curva di Jordan · Teorema della mappa di Riemann
Applicazioni praticheTopologia dello spazio-tempo · Teoria quantistica dei campi topologica · K-teoria ritorta · Topologia di rete · Controllo della topologia · Topologia molecolare
Toro
Spazi topologici
Topologie classicheTopologia banale · Spazio di Sierpiński · Cofinita · Topologia della semicontinuità inferiore · di Zariski · Euclidea · del limite inferiore o di Sorgenfrey · Discreta · Topologia degli interi equispaziati · Insieme reale esteso · Topologia di ordine · Piano di Moore · Topologia p-adica
Costruzioni topologicheTopologia prodotto · Topologia di sottospazio · Topologia quoziente · Compattificazione (di Alexandrov · di Stone-Čech) · Cono · Bouquet · Rosa · Sospensione
Topologie in Analisi funzionaleSpazio funzionale · Topologia iniziale o debole · Topologia operatoriale · Topologia finale o forte · Topologia di Mackey · Topologia polare · Topologie operatoriali debole e forte
Altri oggetti topologiciSfera · Palla · Toro · Corpo con manici · Bottiglia di Klein · Bottiglia di Klein solida · Anello · Nastro di Möbius · Retta proiettiva · Piano proiettivo · Superficie di Riemann · Nodo · Nodo torico · Link
FrattaliInsieme di Cantor · Spazio di Cantor · Polvere di Cantor · Spugna di Menger · Sfera di Alexander · Curva di Peano · Laghi di Wada
Strutture misteSpazio vettoriale topologico · Gruppo topologico · Gruppo di Lie · Spazio uniforme · Algebra di Borel
Proprietà degli spazi topologici
NumerabilitàAssioma di numerabilità · Spazio primo-numerabile · Spazio separabile · Spazio sequenziale
SeparazioneAssioma di separazione · Spazio T0 · Spazio T1 · Spazio di Hausdorff · Spazio regolare · Spazio di Tichonov · Spazio normale
CompattezzaSpazio compatto · Spazio paracompatto · Spazio localmente compatto · Spazio di Lindelöf · Sottospazio relativamente compatto · Immersione compatta
ConnessioneSpazio connesso · Spazio semplicemente connesso
MetrizzabilitàSpazio metrico · Spazio metrico completo · Spazio metrizzabile · Spazio ultrametrico · Spazio pseudometrico · Spazio polacco · Spazio normato · Spazio totalmente limitato
Altre proprietàSpazio di Baire · Spazio topologico noetheriano · Spazio omogeneo · Orientazione
Topologia differenzialeVarietà (differenziabile · parallelizzabile · 3-varietà · 3-varietà irriducibile) · Atlante · Diffeomorfismo (locale · di Anosov) · Immersione · Curva · Superficie · Campo vettoriale · Fibrato (principale · vettoriale · Varietà fibrata) · Fibrato tangente · Spazio tangente · Fibrazione di Hopf · Varietà con bordo · Teorema dell'intorno tubolare · Somma connessa · Teorema di Kneser-Milnor · Congettura di geometrizzazione di Thurston · Cobordismo · Dimensione topologica · Topologia in dimensione bassa · Chirurgia di Dehn · Trasversalità · Eversione della sfera · Teoria delle foliazioni · Decomposizione JSJ
Topologia algebrica
FondamentiSpazio semplicemente connesso · Gruppo fondamentale
OmotopiaArco · Nerbo · Omotopia · Gruppi di omotopia
Omologia e coomologiaOmologia · Omologia singolare · Omologia ciclica · Algebra omologica · Coomologia di De Rham · Categoria abeliana
SollevamentoSollevamento · Teorema del sollevamento dell'omotopia · Teorema di unicità del sollevamento · Teorema di Van Kampen
Topologia algebrica avanzataGrado topologico · Indice di avvolgimento · Indice di un campo vettoriale · Rivestimento · Numero di Betti · Successione di Mayer-Vietoris · Successione esatta · Successione spettrale · Complesso simpliciale · Complesso di celle · Complesso di catene · Schema simpliciale
SuperficiCaratteristica di Eulero · Formula di Eulero per i poliedri · Genere · Taglio · Superficie incompressibile · Classificazione delle superfici · Mapping class group · Teorema della palla pelosa · Teorema di Poincaré-Hopf · Congettura di Poincaré · Congettura di Hodge
Topologi di rilievoHenri Poincaré · Felix Hausdorff · Georg Cantor · Eduard Čech · John Milnor · Pierre Samuel · Norman Steenrod · René Thom · Samuel Eilenberg · Andrej Nikolaevič Kolmogorov · Stephen Smale · Michael Atiyah · William Thurston · Marston Morse · Luitzen Brouwer
Controllo di autoritàThesaurus BNCF 21329 · LCCN (ENsh00005762 · J9U (ENHE987007292879305171 · NDL (ENJA00567234